跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃義雄
研究生(外文):Yisyong Huang
論文名稱:含4,5-雙氰基咪唑之小分子及其光伏打電池之應用
論文名稱(外文):4,5-Dicyanoimidazole-based Derivatives and Their Application for Organic Photovoltaics
指導教授:林建村林建村引用關係陳銘洲
指導教授(外文):Jiann-Tsuen LinMing-Chou Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:104
中文關鍵詞:咪唑有機光伏打電池
外文關鍵詞:imidazoleorganic photovoltaic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文合成出一系列含DCI (1-hexyl-4,5-dicyanoimidazole)結構之線型化合物。運用二苯胺基(diphenylamine)與蔥(anthracene)取代基為電子予體、DCI為電子受體,及不同共軛長度的官能基為共軛架橋,可分別合成出具對稱性與不對稱性之化合物。在342−504 nm波長處的消光係數為23,200−53,100 M-1cm-1,而隨著分子具有較佳的共面性時,化合物具有較紅位移的光吸收波長與較高的消光係數。其中,蔥(anthracene)取代化合物有更加的共面性,使其有更佳的光收成。經由理論計算,可發現這些分子具有電荷轉移吸收特徵,也多有良好的吸收消光係數。DCI基團與相鄰之苯環有較大之二面角(42.3−46.3o)。共軛架橋的二面角(3.1−20.4o)相對較小。以此類含DCI結構之分子作為p-type材料,摻以PCBM (phenyl-C61-butyric acid methyl ester)作為n-type材料,製作出BHJ形式之有機光伏打電池(Organic Photovoltaic Cells,OPV)。由元件結果顯示當化合物TVPY−DCI與PCBM以1:2的摻混比例製作時,元件有最佳的效率(0.33%)。同時,由於DCI系列分子的HOMO能階皆較低,除了T−DCI之外,其餘化合物之元件具有高開環電壓(VOC)之優點(0.89−1.09 V)。另外,蒽系列化合物雖然有最佳的共軛,物理量測與理論計算皆顯示其有較強與較為紅位移之吸收光譜,但其在有機溶劑中溶解度較差,導致製成之元件效率也不佳。我們藉由原子力顯微鏡(Atomic Force Microscopy,AFM)觀看An2Th−DCI元件之表面型態(morphology),發現材料表面有嚴重的堆疊而導致元件之電流密度較低。反之,TVPY−DCI元件之表面粗糙度相對較低,因而擁有較高之電流密度與轉換效率。
A new series of liner organic compounds containing 1-hexyl-4,5-dicyanoimidazole (DCI) unit have been synthesized. These compounds can be of asymmetric type with a D-S-A motif, or of symmetric type with a A-S-D-S-A motif, where D is the electron donor such as diphenylamino or anthracenyl moiety, A was the electron acceptor (DCI), and S is theπ-conjugated spacer of different length. The compounds have high molar absorption coefficients (23,200−53,100 M-1cm-1) in the region 342−504 nm, and the absorption coefficient and wavelength increase as the molecules have better co-planarity. Among the compounds, the anthracene-based molecules with rather planar π−conjugated system have superior light-harvesting behavior. The longer wavelength absorptions of these molecules are π−π* transitions with charge-transfer character due to the presence of the electron-withdrawing DCI group. Theoretical calculations indicate that these compounds possess fairly small dihedral angles of the conjugation spacer (3.1−20.4o) except that between DCI and the neighboring phenyl groups (42.3−46.3o). The photovoltaic devices of BHJ configuration using these DCI-containing compounds and PCBM (phenyl-C61-butyric acid methyl ester) as the donor and the acceptor, respectively, were also studied. The photovoltaic cell fabricated with the blend of TVPY−DCI and PCBM in a 1:2 ratio exhibits the highest power conversion efficiency (?) reaching 0.33%. Except for T−DCI, all the devices fabricated with the DCI molecules exhibited high open-circuit voltage (VOC) in the range of 0.89−1.09 V, which can be attributed to the more stabilized HOMO levels of the DCI compounds. In spite of good light-harvesting behavior, the low solubility of anthracene-based molecules in common organic solvents prevent formation of films with good quality, which led to low performance of the devices based on them. This is further evidenced by the atomic force microscopy (AFM) image, a plethora of aggregation was found for these molecules which led to low current density (JSC). On the contrary, the AFM image of compound TVPY−DCI showed rather flattened active layer, which resulted high current density and power conversion efficiency.
中文摘要 ------------------------------------------------ i
英文摘要 ----------------------------------------------- ii
謝誌 --------------------------------------------------- iv
目錄 --------------------------------------------------- vi
圖目錄 ----------------------------------------------- viii
表目錄 -------------------------------------------------- x
附圖附錄 ----------------------------------------------- xi
一、 緒論 ------------------------------------------- 1
1−1 前言 ------------------------------------------- 1
1−2 太陽光譜 ------------------------------------------ 1
1−3 太陽能電池介紹 --------------------------------- 3
1−4 有機光伏打電池簡介 ----------------------------- 8
1−5 太陽能電池電壓–電流輸出參數及特性說明 -------- 13
1−6 研究動機 -------------------------------------- 16
二、 實驗方法和過程說 ------------------------------ 21
2−1 實驗儀器 -------------------------------------- 21
2−2 實驗藥品及溶劑 -------------------------------- 22
2−3 實驗過程 -------------------------------------- 24
2−4 元件製作 -------------------------------------- 40
三、 結果與討論 ------------------------------------ 42
3−1 DCI化合物的合成與探討 ------------------------ 42
3−2 DCI化合物之物性探討 --------------------------- 48
3−3 理論計算 -------------------------------------- 63
3−4 結論 ------------------------------------------ 71
參考文獻 ----------------------------------------------- 73
附圖 --------------------------------------------------- 79
1.http://www.ys-solar.com/news_detail.asp?news_id=98.
2.http://www.eyesolarlux.com/Solar-simulation-energy.htm.
3.Kallmans, H.; Pope, M. J. Chem. Phys. 1958, 30, 585.
4.Green, M. A. et al in “Proceeding of the 21st IEEE Photovoltaic Specialists Conference.” Orlando, USA: IEEE Publication, 1990.
5.Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
6.馮垛生,“太陽能發電原理與應用”五南圖書出版股份有限公司, 2009.
7.郭明村,“薄膜太陽能電池發展近況”工業材料雜誌, 2003, 203, 138.
8.萬海保, 曹立新, 王麗穎, 曾廣賦, 席時權, “染料敏化的TiO2奈米晶多孔膜的性質及光電轉移” 化學通報, 1999, 6.
9.Tsubimur, H.; Mastsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402.
10.Regan, B. O.; Grätzel, M. Nature 1991, 343, 737.
11.Nogueira, A. F.; Longo, C.; De Paoli, M.-A. Coord. Chem. Rev., 2004, 248, 1455.
12.Nazeeruddin, M. K.; Kay, A.; Rodicio, L.; Humphrey-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993,115, 6382.
13.Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphrey-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
14.(a) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (b) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys., Part 2 2006, 45, L638. (c) Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphrey-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Chem. Commun. 2008, 2629.
15.Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
16.Peumans, P.; Bulovi, V.; Forrest, S. R. Appl. Phys. Lett. 2000, 76, 2650.
17.Peumans P.; Forrest S. R., Appl. Phys. Lett. 2001, 79, 126.
18.Xue, J.; Uchida, S.; Rand, B. P.; Forrest, S. R. Appl. Phys. Lett. 2005, 85, 5757.
19.Karg; Riess, W.; Dyakonov, V.; Schwoerer, M. Synth. Met. 1993, 54, 427.
20.Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. Science, 1995, 270, 1789.
21.Padinger, F.; Rittberger, R.S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.
22.Park, S. H.; Roy, A.; Beaupre´, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297.
23.(a) Tsuzuki, T. T.; Shirota, J.; Rostalski, J.; Meissner, D. Sol. Energy Mater. Sol. Cells 2000, 61, 1. (b) Uchida, J. X.; Rand, B. P.; Forrest, S. R. Appl. Phys. Lett. 2004, 84, 4218. (c) Zhou, X.; Blochwitz, J.; Pfeiffer, M.; Nollau, A.; Fritz, T.; Leo, K. Adv. Funct. Mater. 2001, 11, 310. (d) Wöhrle, D.; Meissner, D. Adv. Mater. 1991, 3, 129. (e) Jenekhe, S. A.; Yi, S. Appl. Phys. Lett. 2000, 77, 2635. (f) Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Hoerhold, H. H. Appl. Phys. Lett. 2002, 81, 3085. (g) Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Appl. Phys. Lett. 1993, 62, 585. (h) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friends, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 78, 451.
24.Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077.
25.Harrison, M. G.; Gruener, J.; Spencer, G. C. W. Phys. Rev. B 1997, 55, 7831.
26.Gűnes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324
27.Thompson, B. C.; Fréchet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.
28.Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
29.Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
30.(a) de Bettignies, R.; Nicolas, Y.; Blanchard, P.; Levillain, E.; Nunzi, J.-M.; Roncali, J. Adv. Mater. 2003, 15, 1939. (b) Cravino, A.; Leriche, P.; Alévêque, O.; Roquet, S.; Roncali, J. Adv. Mater. 2006, 18, 3033. (c) Lloyd, M. T.; Mayer, A. C.; Subramanian, S.; Mourey, D. A.; Herman, D. J.; Bapat, A. V.; Anthony, J. E.; Malliaras, G. G. J. Am. Chem. Soc. 2007, 129, 9144. (d) Tamayo, A. B.; Walker, B.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112, 11545. (e) Lincker, F.; Delbosc, N.; Bailly, S.; De Betignies, R.; Billon, M.; Pron, A.; Demadrille, R. Adv. Funct. Mater. 2008, 18, 3444. (f) Silvestri, F.; Irwin, M. D.; Beberina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640. (g) Kronenberg, N. M.; Deppisch, M.; Wu¨rthner, F.; Lademann, K. D.; Meerholz, K. Chem. Commun. 2008, 6489. (h) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J. Chem. Commun. 2009, 1673. (i) Marrocchi, A.; Silvestri, F.; Seri, M.; Facchetti, A.; Taticchi, A.; Marks, T. J. Chem. Commun. 2009, 1380. (j) Walker, B.; Tamayo, A. B.; Dang, X. D.; Jung, P. Z.; Seo, H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063. (k) Wong, W. W. H.; Jones, D. J.; Yan, C.; Watkins, S. E.; King, S.; Haque, S. A.; Wen, X.; Ghiggino, K. P.; Holmes, A. B. Org. Lett. 2009, 11, 975.
31.Schllze, K.; Uhrich, C.; Schüppel, R.; Leo, K.; Pfeiffer, M.; Brier, E.; Reinold, E.; Bäuerle, P. Adv. Mater. 2006, 18, 2872.
32.Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. Adv. Mater. 2005, 17, 66.
33.Zhang, Y.; Yip, H.-L.; Acton, O.; Hau, S. K.; Huang, F.; Jen, A. K.-Y. Chem. Mater. 2009, 21, 2598.
34.Petritsch, D. I. K.. “Organic Solar Cell Architectures”, PhD Thesis, 2000.
35.Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374.
36.Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang. P. Chem. Commun. 2009, 2198.
37.(a) Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H. Chem. Commun. 2001, 569; (b) Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783. (c) Hara, K.; Wang, Z.-S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476.
38.(a) Horiuchi, T.; Miura,; Uchida, S. Chem. Commun. 2003, 3036 (b) Horiuchi, T.; Miura, Uchida, S. J. Photochem. Photobiol., A 2004, 164, 29 (c) Ito, S; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Peter, P. P.; Grätzel, M. Chem. Commun. 2008, 5194.
39.(a) Ehret, A.; Stuhl, L.; Spitler, M. T. J. Phys. Chem. B 2001, 105, 9960. (b) Ma, X.; Hua, J.; Wu, W.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H, Tetrahedron 2008, 64, 345.
40.(a) Yao, Q. H.; Meng, F. S.; Li, F. Y.; Tian, H.; Huang, C. H. J. Mater. Chem. 2003, 13, 1048 (b) Wang, Z. A.; Li, F. Y.; Haung, C. H. Chem. Commun. 2000, 2063.
41.(a) Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y. C.; Ho, K. C. Org. Lett. 2005, 7, 1899. (b) Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N.; Ai, X.; Lian, T.; Yanagida, S. Chem. Mater. 2004, 16, 1806. (c) Hagberg, D. P.; Edvinssion, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. (d) Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F. J. Phys. Chem. C, 2008, 112, 874.
42.Chen, R.; Yang, X.; Tian, H.; Sun, L. J. Photochem. Photobiol., A, 2007, 189, 295.
43.(a) Lin, J. T.; Chen, P. C.; Yen, Y. S.; Hsu, Y. C.; Chou, H. H.; Yeh, M. C. P. Org. Lett. 2009, 11, 97. (b) Li, R.; Lv, X.; Shi, D.; Zhou, D.; Cheng, Y.; Zhang, G.; Wang, P. J. Phys. Chem. C 2009, 113, 7469.
44.(a) Justin Thomas, K. R.; Lin, J. T.; Hsu, Y. C.; Ho, K. C. Chem. Commun. 2005, 4098. (b) Justin Thomas, K. R.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng, Y.-M.; P.-T. Chou, P.-T. Chem. Mater. 2008, 20, 1830. (c) Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 327.
45.Ning, Z.; Zhang, Q.; Pei, H.; Luan, J.; Lu, C.; Cui, Y.; Tian, H. J. Phys. Chem. C 2009, 113, 10307.
46.Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Adv. Funct. Mater. 2005, 15, 246.
47.(a) Li, G.; Jiang, K.-J.; Li, Y.-F.; Li, S.-L.; Yang, L.-M. J. Phys. Chem. C 2008, 112, 11591. (b) Zhang, G.; Bai, Y.; Li, R.; Shi, D.; Wenger, S.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. Energy Environ. Sci. 2009, 2, 92. (c) Li, G.; Zhou, Y.-F.; Cao, X. B.; Bao, P.; Jiang, K.-J.; Lin, Y.; Yang, L.-M. Chem. Commun. 2009, 2201.
48.(a) Yen, Y. S.; Hsu, Y. C.; Lin, J. T.; Chang, C. W.; Hsu, C. P.; Yin, D. J. J. Phys. Chem. C 2008, 112, 12557. (b) Li, Q.; Lu, L.; Zhong, C.; Shi, J.; Huang, Q.; Jin, X.; Peng, T.; Qin, J.; Li, Z. J. Phys. Chem. B 2009, 113, 14588.
49.Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; YueWu1, Li, G. Nature Photonics, 2009, 3, 649.
50.Velusamy, M.; Huang, J.-H.; Hsu, Y.-C.; Chou, H.-H.; Ho, K.-C.; Wu, P.-L.; Chang, W.-H.; Lin, J. T.; Chu, C.-W. Org. Lett. 2009, 11, 4898.
51.Flynn, D. C.; Ramakrishna, G.; Yang,.H.-B.; Northrop, B. H.; Stang, P. J.; and Goodson, T. J. Am. Chem. Soc. 2010, 132, 1348.
52.Teng, C.; Yang, X.; Yang, C.; Li, S.; Cheng, M.; Hagfeldt, A.; and Sun, L. J. Phys. Chem. C 2010, 114, 9101.
53.(a) Valentini, L.; Bagnis, D.; Marrocchi, A.; Seri, M.; Taticchi, A.; Kenny, J. M. Chem. Mater. 2008, 20, 32.
54.Shin, R. Y. C.; Sonar, P.; Siew, P. S.; Chen, Z.-K.; Sellinger, A. J. Org. Chem. 2009, 74, 3293.
55.Milstein, D.; Stille, K. J. J. Am. Chem. Soc. 1978, 100, 3636.
56.Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Org. Proc. Res. Develop. 2010, 14, 30.
57.Sonogashira K.; Tohda, Y., Hagihara, N. Trtrahedron Lett. 1975, 4467.
58.(a)Apen, P. G.; Pasmussen, P. G., J. Am. Chem. Soc. 1991, 113, 6178. (b) Apen, P. G.; Pasmussen, P. G., Heterocycles 1989, 29, 1325.
59.Xia, P. F.; Feng, X. J.; Lu, J.; Tsang, S.-W.; Movileanu, R.; Tao, Y.; Wong, M. S. Adv. Mater. 2008, 20, 4810.
60.Zhang, H.; Wan, X.; Xue, X.; Li, Y.; Yu, A.; Chen, Y. Eur. J. Org. Chem. 2010, 75, 1681.
61.(a) Markov, D. E.; Amsterdam, E.; Blom, P. W.. M.; Sieval, A. B.; Hummelen, J. C. J. Phys. Chem. A 2005, 109, 5266. (b) Theander, M.; Yartsev, A.; Zigmantas, D.; Sundström, V.; Mammo, W.; Andersson, M. R.; Inganäs, O. Phys. Rev. B 2000, 61, 12957.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top