|
[1]J. A. Kittl, Q. Z. Hong, “Self-aligned Ti and Co silicides for high performance sub-0.18 μm CMOS technologies”, Thin Solid Films, 320, 110 (1998). [2]F. Deng, R. A. Johnson, P. M. Asbeck, S. S. Lau, W. B. Dubbelday, T. Hsiao, “Salicidation process using NiSi and its device application”, J. Woo, J. Appl. Phys., 81, 8047 (1997). [3]J. P. Gambino, E. G. Colgan, “Silicides and ohmic contacts”, Mater. Chem. Phys., 52, 99 (1998). [4]C.-P. Chao, K. E. Violette, S. Unnikrishnan, M. Nandakumar, R. L. Wise, J. A. Kittl, Q.-Z. Hong, I.-C. Chen, “Low resistance Ti or Co salicided raised source/drain transistors for sub-0.13 μm CMOS technologies”, IEDM Tech. Dig., 103 (1997). [5]J. A. Kittl, Q. Z. Hong, H. Yang, N. Yu, S. B. Samavedam, M. A. Gribelyuk, “Advanced salicides for 0.10 μm CMOS: Co salicide processes with low diode leakage and Ti salicide processes with direct formation of low resistivity C54 TiSi2”, Thin Solid Films, 332, 404 (1998). [6]J. A. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D. P. Brunco, M. J. H. Van Dal, A. Lauwers, “Silicides and germanides for nano-CMOS applications”, Mater. Sci. Eng. B, 154, 144 (2008).
[7]S. P. Murarka, “Silicide thin films and their applications in microelectronics”, Intermetallics, 3, 173 (1995). [8]E. G. Colgan, J. P. Gambino, Q. Z. Hong, “Formation and stability of silicides on polycrystalline silicon”, Mater. Sci. Eng., R16, 43 (1996). [9]M. Diale, C. Challens, E. C. Zingu, “Cobalt self-diffusion during cobalt silicide growth”, Appl. Phys. Lett., 62, 943 (1993). [10]P. Liu, T. C. Hsiao, J. C. S. Woo, “A low thermal budget self-aligned Ti silicide technology using germanium implantation for thin-film SOI MOSFET’s”, IEEE Trans. Electron Devices, 45, 1280 (1998). [11]E. Gerritsen, “Spike anneal: RTP processing at reduced thermal budget with applications to TiSi formation towards 0.1-μm linewidths”, Microelectron. Eng., 50, 147 (2000). [12]R. W. Mann, L. A. Clevenger, “The C49 to C54 phase transformation in TiSi2 Thin Films”, J. Electrochem. Soc., 141, 1347 (1994). [13]G. L. Miles, R. W. Mann, J. E. Bertseh, “TiSi2 phase transformation characteristics on narrow devices”, Thin Solid Films, 290, 469 (1996). [14]A. Lauwers, Q. F. Wang, B. Deweerdt, K. Maex, “Ti/Co bilayers in salicide technology electrical evaluation”, Appl. Surf. Sci., 91, 12 (1995).
[15]J. A. Kittl, W. T. Shiau, Q. Z. Hong, D. Miles, “Salicides: materials, scaling and manufacturability issues for future integrated circuits”, Microelectron. Eng., 50, 87 (2000). [16]T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, H. Iwai, “Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI”, IEEE Trans. Electron Devices, 42, 915 (1995). [17]A. Lauwers, J. A. Kittl, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, K. Maex, “Ni based silicides for 45 nm CMOS and beyond”, Mater. Sci. Eng. B, 114. 29 (2004). [18]B. Imbert, R. Pantel, S. Zoll, M. Gregoire, R. Beneyton, S. del Medico, O. Thomas, “Nickel silicide encroachment formation and characterization”, Microelectron. Eng., 87, 245 (2010). [19]M. Sinha, E. F. Chor, Y. C. Yeo, “Tuning the Schottky barrier height of nickel silicide on p-silicon by aluminum segregation”, Appl. Phys. Lett., 92, 222114 (2008). [20]T. Ohguro, S.-i. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, H. Iwai, “Analysis of resistance behavior in Ti and Ni-salicided polysilicon films”, IEEE Trans. Electron Devices, 41, 2305 (1994). [21]H. Iwaia, T. Ohguro, S.-i. Ohmia, “NiSi salicide technology for scaled CMOS”, Microelectron. Eng., 60, 157 (2002).
[22]X.-P. Qu, Y.-L. Jiang, G.-P. Ru, F. Lu, B.-Z. Li, C. Detavernier, R .L. Van Meirhaeghe, “Thermal stability, phase and interface uniformity of Ni-silicide formed by Ni–Si solid-state reaction”, Thin Solid Films, 462, 146 (2004). [23]D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe, C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation”, J. Appl. Phys., 98, 033526 (2005). [24]D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001)”, Acta Mater., 54, 4905 (2006). [25]P. Revesz, L. R. Zheng, L. S. Hung, J. W. Mayer, “Morphological degradation of TiSi2 on (100) silicon”, Appl. Phys. Lett., 48, 1591 (1986). [26]F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Ga, L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectron. Eng., 71, 104 (2004). [27]R. Tanabe, T. Yamasaki, Y. Ashizawa, H. Oka, “Analysis of nano-scale MOSFET including uniaxial and biaxial strain”, J. Comp. Electron, 6, 49 (2007). [28]K. Rim, R. Anderson, D. Boyd, F. Cardone, K. Chan, H. Chen, S. Christansen, J. Chu, K. Jenkins, T. Kanarsky, S. Koester, B. H. Lee, K. Lee, V. Mazzeo, A. Mocuta, D. Mocuta, P. M. Mooney, P. Oldiges, J. Ott, P. Ronsheim, R. Roy, A. Steegen, M. Yang, H. Zhu, M. Ieong, H.-S. P. Wong, “Strained Si CMOS (SS CMOS) technology: opportunities and challenges”, Solid-State Electron., 47, 1133 (2003). [29]K. Rim, J. L. Hoyt, J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si n-MOSFET’s”, IEEE Trans. Electron Devices, 47, 1406 (2000). [30]K. W. Ang, K. J. Chui, V. Blimetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, Y.-C. Yeo, “Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions”, Tech. Dig.-Int. Electron Devices Meet., 1069 (2004). [31]H. Yin, Z. Ren, H. Chen, J. Holt, X. Liu, J. W. Sleight, K. Rim, V. Chan, D. M. Fried, Y. H. Kim, J. O. Chu, B. J. Greene, S.W. Bedell, G. Pfeiffer, R. Bendernagel, D. K. Sadana, T. Kanarsky, C. Y. Sung, M. Ieong, G. Shahidi, “Integration of local stress techniques with strained-Si directly on insulator (SSDOI) substrates”, Tech. Dig.-VLSI, 76 (2006). [32]K.-W. Ang, K.-J. Chui, H.-C. Chin, Y.-L. Foo, A. Du, W. Deng, M.-F. Li, G. Samudra, N. Balasubramanian, Y.-C. Yeo, “50 nm silicon-on-insulator n-MOSFET featuring multiple stressors: silicon-carbon source/drain regions and tensile stress silicon nitride liner”, Tech. Dig.-VLSI, 90 (2006). [33]Y.-C. Yeo, Semicond. Sci. Technol., “Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions”, 22, S177 (2007). [34]C.-H. Ge, C.-C. Lin, C.-H. KO, C.-C. Huang, Y.-C. Huang, B.-W. Chan, B.-C. Pemg, C.-C. Sheu, P.-Y. Tsai, L.-G. Yao, C.-L. Wu, T.-L. Lee, C.-J. Chen, C.-T. Wang, S.-C. Lin, Y.-C. Yeo, C. Hu, “Process-strained Si (PSS) CMOS technology featuring 3D strain engineering”, Tech. Dig.-Int. Electron Devices Meet., 73 (2003). [35]K. Rim, J. L. Hoyt, J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si n-MOSFET’s”, IEEE Trans. Electron Devices, 47, 1406 (2000). [36]T. Tezuka, N. Sugiyama, T. Mizuno, S. Takagi, “Novel fully-depleted SiGe-on-insulator p-MOSFETs with high-mobility SiGe surface channels”, Tech. Dig.-Int. Electron Devices Meet., 946 (2001). [37]T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F. Matsuoka, N. Nagashima, T. Noguchi, “Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design”, Tech. Dig.-Int. Electron Devices Meet., 217 (2004). [38]S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, “A 90-nm logic technology featuring strained-silicon”, IEEE Trans. Electron Devices, 51, 1790 (2004). [39]J. Demeulemeester, D. Smeets, C. Van Bockstael, C. Detavernier, C. M. Comrie, N. P. Barradas, A. Vieira, A. Vantomme1, “Pt redistribution during Ni(Pt) silicide formation”, Appl. Phys. Lett., 93, 261912 (2008). [40]D. Lee, K. Do, D.-H. Ko, S. Choi, J.-H. Ku, C.-W. Yang, “The effects of Ta on the formation of Ni-silicide in Ni0.95xTax0.05/Si systems”, Mater. Sci. Eng. B, B114, 241 (2004). [41]Y. Setiawan, P. S. Lee, C. W. Tan, K. L. Pey, “Effect of Ti alloying in nickel silicide formation”, Thin Solid Films, 504, 153 (2006). [42]W. Huang, L.-C. Zhang, Y.-Z. Gao, H.-Y. Jin, “The improvement of thermal stability of nickel silicide by adding a thin Zr interlayer”, Microelectron. Eng., 83, 345 (2006). [43]W. Huang, L. Zhang, Y. Gao, H. Jin, “Effect of a thin W, Pt, Mo, and Zr interlayer on the thermal stability and electrical characteristics of NiSi”, Microelectron. Eng., 84, 678 (2007). [44]W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, B. Z. Li, “Effect of erbium interlayer on nickel silicide formation on Si(100)”, Appl. Surf. Sci., 254, 2120 (2008). [45]D. Mangelinck, J. Y. Dai, J. S. Pan, S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition”, Appl. Phys. Lett., 75, 1736 (1999). [46]C. Detaverniera, C. Lavoie, “Influence of Pt addition on the texture of NiSi on Si(001)”, Appl. Phys. Lett., 84, 3549 (2004). [47]M. Sinha, E. F. Chor, Y.-C. Yeoa, “Tuning the Schottky barrier height of nickel silicide on p-silicon by aluminum segregation”, Appl. Phys. Lett., 92, 222114 (2008).
[48]A. T.-Y. Koh, R. T.-P. Lee, A. E.-J. Lim, D. M.-Y. Lai, D.-Z. Chi, K.-M. Hoe, N. Balasubramanian, G. S. Samudra, Y.-C. Yeo, “Nickel-aluminum alloy silicides with high aluminum content for contact resistance reduction and integration in n-channel field-effect transistors”, J. Electrochem. Soc., 155, H151 (2008). [49]O. Nakatsuka, K. Okubo, A. Sakai, M.Ogawa,Y. Yasuda, S. Zaima, “Improvement in NiSi/Si contact properties with C-implantation”, Microelectron. Eng., 82, 479 (2005). [50]V. Machkaoutsan, S. Mertens, M. Bauer, A. Lauwers, K. Verheyden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S. G. Thomas, E. H. A. Granneman., “Improved thermal stability of Ni-silicides on Si:C epitaxial layers”, Microelectron. Eng., 84, 2542 (2007).
|