|
[1] 林建甫(2008) 。存活分析。台北市: 雙葉書局。 [2] Andersen, P. K. and Gill, R. D. (1982). Cox''sregression model for counting processes: A large sample study. Annals of Statistics, 10,1100-1120. [3] Cook, R. J. and Lawless, J. F. (2006). The statistical analysis of recurrent events. Springer, New York. [4] Cox, D. R. (1972). Regression models and life-tables (with discussion).Journal of the Royal Statistical Society, B 34, 187-200. [5] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of chronic disease incidence. Biometrika, 65, 141-151. [6] Crowder, M. (1989). A multivariate distribution with Weibull connections.Journal of the Royal Statistical Social, B 51, 93-107. [7] Fuchs, H. J., Borowitz, D. S., Christiansen, D. H., Morris, E. M.,Nash, M. L., Ramsey, B. W., Rosenstein, B. J., Smith, A. L., and Wohl, M. E. (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Goup. New England Journal Medicine, 331, 637-642. [8] Guo, G. and Rodriguez, G. (1992). Estimating a multivariate proportional hazards model for clustered data using the em algorithm.with an application to child survival in guatemala. Journal of American Statistical Association, 87, 969-976. [9] Hougaard, P.(1986a). Survival models for heterogeneous populations derived frim stable distributions. Biometrics, 73, 671-678. [10] Hougaard, P. (1986b). A class of multivariate failure time distributions.Biometrics, 73, 387-396. [11] Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221-233. [12] Klein, J. P. (1992). Semiparametirc estimation of random effects using the cox model based on the em algorithm. Biometrics, 48,798-806. [13] Kaplan, E. L. and Meier, P. (1958). Non-parameteric estimation from incomplete observtion. Journal of American Statistical Association, 53, 457-481. [14] Lin, D. Y. and Wei, L. J. (1989). The robust inference for the cox proportional hazard model. Journal of the American Statistical Association, 84, 1074-1078. [15] Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 2233-2247. [16] Liang, K. Y., Self, S. G., Bandeen-Roche, K. J., and Zeger, S. L.(1995). Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Analysis, 1, 403-415. [17] MaGilchrist, C. A. and Aisbtt, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461-466. [18] Oakes, D. (1992). Frailty models for multiple event times. Survival analysis: state of the art, 371-379. [19] Prentice, P. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68,373-379. [20] Rubin, D. B. (1976) Inference and Missing Data. Biometrika, 63, 581-592. [21] Therneau, T. M. and Grambush, P. M.(2000). Modeling survival data: extending the Cox model. Springer, New York. [22] Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439-454. [23] Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of American Statistical ssociation, 84, 1065-1073. [24] Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1995). Correlated individual frailty: An advantageous approach to survival analysis of bivariate data. Mathematical Population Studies, 5(2), 145-159.
|