跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許凱凱
研究生(外文):Kai-kai Hsu
論文名稱:利用隱式型態模式之自適應車行監控畫面分析系統
論文名稱(外文):Adaptive Traffic Scene Analysis by using Implicit Shape Model
指導教授:蘇柏齊
指導教授(外文):Po-Chyi Su
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:59
中文關鍵詞:交通監控車輛交疊
外文關鍵詞:vehicletrafficsurveillanceocclusionSIFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一個針對固定式道路監視畫面之分析工具,用以協助解決車輛影像交疊問題,並提升車流評估及車輛分類準確度。本論文主要分為兩個部份,第一部份為模型訓練機制,經由搜集之交通場景及車輛相關資訊,分析其統計特性,取得目標道路車流方向及出現之機車、汽車、公車等各類車輛大小資訊,接著以自動化的方式建立交通場景模型及代表車輛之隱式型態模式 (ISM)。值得注意的是,此自適應機制可以大幅減少模型建置的人力需求。第二部份結合了訓練完成的ISM,對可能發生車輛影像交疊的部份進行辨識。實驗結果顯示了這個機制確實能夠適應不同的交通場景,並且有效地解決道路監視器畫面中車輛影像交疊的問題。
This research presents a framework of analyzing the traffic
information in the surveillance videos from the static roadside cameras to assist resolving the vehicle occlusion problem for more accurate traffic flow estimation and vehicle classification. The proposed scheme consists of two main parts. The first part is a model training mechanism, in which the traffic and vehicle information will be collected and their statistics are employed to automatically establish the model of the scene and the implicit shape model of vehicles. It should be noted that the proposed self-training mechanism can reduce a great deal of human efforts. The second part adopts the established implicit shape model, which is a highly flexible learned representation, for vehicle recognition when possible occlusions of vehicles are detected. Experimental results demonstrate that the proposed scheme can deal with the scenes with different characteristics and the occlusion problem in traffic surveillance videos can be reasonably resolved.
Contents
1 Introduction 1
1.1 Significance of the Research . . . . . . . . . . . . . . 1
1.2 Contributions of the Research . . . . . . . . . . . . . 2
1.3 The Organization of Thesis . . . . . . . . . . . . . . 3
2 The Related Works 4
2.1 Self-Training Mechanism . . . . . . . . . . . . . . . . 4
2.2 Vehicle Occlusion Handling . . . . . . . . . . . . . . 6
3 The Proposed Self-Training Scheme 9
3.1 System Overview . . . . . . . . . . . . . . . . . . . . 9
3.2 Background Model Construction . . . . . . . . . . . . 11
3.3 Occlusion Vehicle Detection . . . . . . . . . . . . . . 12
3.4 Review of Scale-Invariant Feature Transform . . . . . 13
3.5 Traffic Information Analysis . . . . . . . . . . . . . . 17
3.6 Review of Implicit Shape Model . . . . . . . . . . . . 19
3.6.1 Shape Model Establishment . . . . . . . . . . 19
3.6.2 Recognition Approach . . . . . . . . . . . . . 22
3.7 Vehicle Shape Model Construction . . . . . . . . . . 25
3.8 Occlusion Resolving . . . . . . . . . . . . . . . . . . . 26
4 Experimental Results 30
4.1 Traffic Information Analysis . . . . . . . . . . . . . . 31
4.2 Vehicle Pattern Extraction and Classification . . . . . 32
4.3 Occlusion Resolving . . . . . . . . . . . . . . . . . . . 38
5 Conclusion and Future Work 42
Reference 44
A. Levin, P. Viola, and Y. Freund, ``Unsupervised improvement of visual detectors using co-training," in Proc. ICCV, vol. 2. Citeseer, 2003, pp. 626-633.
V. Nair and J. Clark, ``An unsupervised, online learning framework for moving object detection," Computer Vision and Pattern Recognition, vol. 2, p. 317324, 2004.
O. Javed, S. Ali, and M. Shah, ``Online detection and classification of moving objects using progressively improving detectors," Computer Vision and Pattern Recognition, vol. 1, p. 696701, 2005.
J. Hsieh, S. Yu, Y. Chen, and W. Hu, ``Automatic traffic surveillance system for vehicle tracking and classification," IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 2, pp. 175-187, 2006.
B. Wu and R. Nevatia, ``Improving part based object detection by unsupervised, online boosting," in IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR''07, 2007, pp. 1-8.
J. Zhou, D. Gao, and D. Zhang, ``Moving vehicle detection for automatic traffic monitoring," IEEE transactions on vehicular technology, vol. 56, no. 1, pp. 51-59, 2007.
H. Celik, A. Hanjalic, E. Hendriks, and S. Boughorbel, ``Online training of object detectors from unlabeled surveillance video," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW''08, 2008, pp. 1-7.
H. Celik, A. Hanjalic, and E. Hendriks, ``Unsupervised and simultaneous training of multiple object detectors from unlabeled surveillance video," Computer Vision and Image Understanding, vol. 113, no. 10, pp. 1076-1094, 2009.
C. Pang, W. Lam, and N. Yung, ``A novel method for resolving vehicle occlusion in a monocular traffic-image sequence," IEEE Transactions on Intelligent Transportation Systems, vol. 5, pp. 129-141, 2004.
C. Pang, W. Lam, and N. Yung, ``A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images," IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3, pp. 441-459, 2007.
X. Song and R. Nevatia, ``A model-based vehicle segmentation method for tracking," in Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, 2005, pp. 1124-1131.
C. Gentile, O. Camps, and M. Sznaier, ``Segmentation for robust tracking in the presence of severe occlusion," 2001.
N. Kanhere, S. Birch eld, and W. Sarasua, ``Vehicle segmentation and tracking in the presence of occlusions," Transportation Research Record: Journal of the Transportation Research Board, vol. 1944, no. -1, pp. 89-97, 2006.
L. Tsai, J. Hsieh, and K. Fan, ``Vehicle detection using normalized color and edge map," IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 850-864, 2007.
C.Wang and J. Lien, ``Automatic Vehicle Detection Using Local Features A Statistical Approach," IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 83-96, 2008.
S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, ``Traffic monitoring and accident detection at intersections," IEEE transactions on Intelligent transportation systems, vol. 1, no. 2, pp. 108-118, 2000.
C. Huang and W. Liao, ``A Vision-Based Vehicle Identification System," Pattern Recognition, vol. 4, pp. 364-367, 2004.
A. Yoneyama, C. Yeh, and C. Kuo, ``Robust vehicle and traffic information extraction for highway surveillance," EURASIP Journal on Applied Signal Processing, vol. 2005, p. 2321, 2005.
W. Zhang, Q. Wu, X. Yang, and X. Fang, ``Multilevel Framework to Detect and Handle Vehicle Occlusion," IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 161-174, 2008.
J. Lou, T. Tan, W. Hu, H. Yang, and S. Maybank, ``3-D model-based vehicle tracking," IEEE Transactions on image processing, vol. 14, no. 10, pp. 1561-1569, 2005.
D. Lowe, ``Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.
B. Leibe, A. Leonardis, and B. Schiele, ``Robust object detection with interleaved categorization and segmentation," International Journal of Computer Vision, vol. 77, no. 1, pp. 259-289, 2008.
Y. Cheng, ``Mean shift, mode seeking, and clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top