中文部分
林嘉陞,2009,CANN:一個整合分群中心與最鄰近鄰居之入侵偵測系統,國立中正大學,碩士論文。英文部分
Baralis, E., Chiusano, S., 2004. Essential classification rule sets, ACM Transactions on Database Systems (TODS), Vol. 29, No. 4, pp.635-674.
Belkin, N.J., Croft, W.B., 1992. Information filtering and information retrieval: two sides of the same coin, Communications of the ACM, Vol. 35, No. 12, pp.29-38.
Berry, M.J., Linoff, G., 1997. Data Mining Techniques: for Marketing, Sales, and Customer Support. NY: John Wiley & Sons.
Blum, A., Langley, P., 1997. Selection of relevant features and examples in machine learning, Artificial Intelligence, Vol. 97, No. 1-2, pp.245-271.
Burges, C.J.C., 1998. A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp.121-167.
Campbell, J. B., 2003. Introduction to remote sensing, 3rd Edition, London: Taylor and Francis.
Canbas, S., Cabuk, A., Kilic S.B., 2005. Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case, European Journal of Operational Research, pp.528-546.
Chang, C.C., Lin, C.J., 2001. LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., 2002. Choosing multiple parameters for support vector machines. Machine Learning, Vol. 46, pp.131-159.
Chen, Y., Garcia, E.K., Gupty, M.R., Rahimi, A., Cazzanti, L., 2009. Similarity-based Classification: Concepts and Algorithms, Journal of Machine Learning Research, Vol. 10, pp.747-776.
Choi, E., Lee, C., 2003. Feature extraction based on the Bhattacharyya distance, Pattern Recognition, Vol. 36, pp.1703-1709.
Cover, T.M., Hart, P.E., 1967. Nearest neighbor pattern classification, IEEE Transactions on Information Theory, Vol. 3, pp.21-27.
Dash, M., Liu, H., Xu, X., 2001. ''1+1>2'': Merging Distance and Density Based Clustering, Proceeding 7th International Conference on Database Systems for Advanced Applications, pp.32-39.
De la Torre, F., Black, M.J., 2001. Robust principal component analysis for computer vision, International Conference on Computer Vision, pp. 362-369.
Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classification, 2nd Edition, John Wiley, New York.
Dy, J.G., Brodley, C.E., 2004. Feature selection for unsupervised learning, Journal of Machine Learning Research, Vol. 5, pp.845-889.
Fayyad, U.M., Piatesky, S.G., Smyth, P., 1996. From Data Mining to Knowledge Discovery in Databases, AI Magazine, pp.37-54.
Foody, G. M., Mathur, A., 2004. A relative evaluation of multiclass image classification by support vector machines, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, pp.1335-1343.
Frawley, W. J., Piatetsky-Shapiro, G. S., Matheus, C. J., 1991. Knowledge Discovery in Databases: An Overview, Knowledge Discovery in Database, AAAI Press, Menlo Park, CA, pp.1-27.
Guha, S., Rastogi R., Shim K., 1998. CURE: An Efficient Clustering Algorithm for Large Databases, Published in the Proceedings of the ACM SIGMOD Conference, pp.73-84.
Han, J., Kamber, M., 2001. Data Mining: Concepts and Techniques, 2nd Edition., Morgan Kaufmann Publishers, USA.
Hand, D., Mannila, H., Smyth, P., 2001. Principles of Data Mining, MIT Press, Cambridge, MA.
Hotelling, H., 1933. Analysis of a Complex of Statistical Variables into Principal Components, J. Educational Psychology, Vol. 24, pp. 498-520.
Jain, A.K., Duin, R.P.W., Mao, J., 2000. Statistical pattern recognition: a review, IEEE Transitions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, pp.4-37.
James, M., 1985. Classification algorithms, John Wiley & Sons, Inc.
Keerthi, S., Chapelle, O., DeCoste, D., 2006. Building support vector machines with reducing classifier complexity, Journal of Machine Learning Research, Vol. 7, pp.1493-1515.
Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Vol. 2, pp.1137-1145.
Koller, D., Sahami, M., 1996. Toward optimal feature selection, Proceedings of the Thirteenth International Conference on Machine Learning, pp. 284–292.
Kudo, M., Masuyama, N., Toyama, J., Shimbo, M., 2003. Simple termination conditions for k-nearest neighbor method, Pattern Recognition Letters, Vol. 24, pp.1203-1213.
Liu, H., Motoda, H., 1998. Feature Selection for Knowledge Discovery and Data Mining, Boston: Kluwer Academic Publishers.
Liu, Y., Zheng, Y.F., 2006. FS_SFS:Anovel feature selection method for support vector machines, Pattern Recognition, Vol. 39, pp.1333-1345.
MacQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, pp.281-297.
Min, S.H., Lee, J., Han, I., 2006. Hybrid genetic algorithms and support vector machines for bankruptcy prediction, Expert Systems with Applications, Vol. 31, pp.652-660.
Mingoti, S.A., Lima, J.O., 2006. Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms, European Journal Of Operation Research, Vol. 174, No. 3, pp.1742-1759.
Oh, I.S., Lee, J.S., Moon, B.R., 2004. Hybrid Genetic Algorithms for Feature Selection, Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 11, pp.1424-1437.
Patcha, A., Park, J.M., 2007. An overview of anomaly detection techniques: Existing solution and latest technological trends. Computer Networks, Vol. 51, pp.3448-3470.
Pearson, K., 1901. On Lines and Planes of Closest Fit to System of Points in Space, Philosophical Magazine, Vol. 2, pp. 559-572.
Pechenizkiy, M., Puuronen, S., Tsymbal, A., 2006. The impact of sample reduction on pca-based feature extraction for supervised learning. Proceedings of the Symposium on Applied Computing (SAC), pp. 553-558.
Richard, J.R., Michael, W.G., 2003. Data Mining A Tutorial-Based Primer. Addison-Wesley.
San, O.M., Huynh, V., Nakamori, Y., 2004. An alternative extension of the K-means algorithm for clustering categorical data, International Journal of Applied Mathematics and Computer Science, Vol. 14, pp.241-247.
Smola, A.J., 1998. Learning with kernels, Ph.D. thesis, Technische Universitat Berlin.
Stone, M., 1974. Cross-Validatory Choice and Assessment of Statistical Predictions, Journal of the Royal Statistical Society B, Vol. 36, No. 1, pp.111-147.
Sung, H.H., Sang, C.P., 1998. Application of Data Mining Tools to Hotel Data Mart on the Intranet for Database Marketing, Expert Systems with Application, Vol. 15, pp.1-31.
Tian, J., Zhu, L., Zhang, S., Liu, L., 2005. Improvement and parallelism of K-means clustering algorithm, Tsinghua Science and Technology, Vol. 10, No. 3, pp.277-281.
Tsai, C.F., Lin, C.Y., 2010. A triangle area based nearest neighbors approach to intrusion detection, Pattern Recognition, Vol. 43, pp. 222-229.
Turk, M., Pentland, A., 1991. Eigenfaces for recognition, Journal of Cognitive Neuroscience, Vol. 3, pp.71-86.
Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer, New York.
Xue, Z., Li, S.Z., Teoh, E.K., 2003. Bayesian shape model for facial feature extraction and recognition, Pattern Recognition, Vol. 36, pp.2819-2833.
Yand, J.H., Honavar, V., 1998. Feature Subset Selection Using a Genetic Algorithm, IEEE Intelligent Systems, Vol. 13, No. 2, pp. 44-49.
Zeng, W., Meng, X.X., Yang, C.L., Huang, L., 2006. Feature extraction for online handwritten characters using Delaunay triangulation, Computers & Graphics, Vol. 30, pp.779-786.