跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱鴻志
研究生(外文):Hung-Chih Chiu
論文名稱:粒子群演算法的改良與應用
論文名稱(外文):Improvements and Applications of Particle Swarm Optimization
指導教授:莊堯棠
指導教授(外文):Yau-tarng Juang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:92
中文關鍵詞:粒子群演算法模糊理論
外文關鍵詞:Particle Swarm OptimizationFuzzy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的係為增加群體內粒子的搜尋能力和效率,而藉由模糊理論的觀念來調適粒子群演算法的加速度參數,這種策略主要是希望粒子群能持續的拓展搜尋範圍和找尋新的最佳解。本論文有兩種優點可以描述,一種就是可以和其它不同型式粒子群演算法的加速度參數做結合增加他們的搜尋性能,另一種就是經由模糊理論訂出三條模糊規則做加速度參數調整,達到全域搜尋能力。另外為了分析演算法於不同領域和適用性問題,透過16種標準函數的測試與5種不同的粒子群算法做比較。最後,經由模擬的結果顯示,本方法的確可以有效地改善原始PSO的性能,並且對於大多數的標準測試函數而言,均有優越的表現。
In this thesis, in order to enhance each variable particle’s searching ability and efficiency, a fuzzy logic control is implemented to adapt the acceleration parameters of particle swarm optimization algorithm (PSO). The important condition of fully utilizing the particle swarm optimization algorithm is to keep advance between extensive searching and exploring global optimal. This method has two advantages. One is that it is flexible to integrate with other PSO techniques to enhance the searching performance further. The other is that it is only used three simple fuzzy inference rules to adaptively adjust the acceleration parameters of the standard PSO and results in certain improved searching ability and efficiency. In addition, the simulation is tested by using 16 benchmark functions. The results show that our proposed methods can efficiently improve the performance of original PSO and outperform the five compared PSO algorithms for most of benchmark functions.
Chapter1 Introduction.....................................1
1.1 Research Motivations and Background...................1
1.2 Literature Reviews....................................3
1.3 Organization..........................................4
Chapter2 Introduction to Computational Intelligence.......6
2.1 Introduction..........................................6
2.2 Fuzzy System..........................................8
2.2.1 Basic definition....................................8
2.2.2 Species of membership function......................9
2.3 Swarm Intelligence...................................11
2.4 Artificial Neural Networks...........................13
2.5 Evolutionary Computing...............................13
Chapter3 Adaptive Fuzzy Particle Swarm Optimizatio Algorithm................................................15
3.1 The standard PSO algorithm...........................15
3.2 Adaptive Fuzzy optimization strategy of PSO........19
3.2.1 Adaptive Fuzzy scheme..............................19
3.2.2 Procedure of the adaptive Fuzzy PSO Algorithm......21
3.3 Membership Function..................................25
3.3.1 Triangular and Trapezoidal membership function.....25
3.3.2 Experiments........................................29
Chapter4 Adaptive Fuzzy Particle Swarm Optimization with Quadratic Crossover Operator.............................33
4.1 AFPSO with quadratic crossover operator..............33
4.2 Experiments..........................................35
4.2.1 Experimental Settings..............................35
4.2.2 Results for the 10-Dimension minimization problems.40
4.2.3 Results for the 30-Dimension minimization problems.46
Chapter5 Particle Swarm Optimization for Stabilization of a Singular Linear Time-Varying System....................53
5.1 Introduction.........................................53
5.2 Particle Swarm Optimization with a constriction factor...................................................54
5.3 Preliminaries for a singular linear time-varying system...................................................54
5.4 Stabilization problem transformed from time-varying to time-invariant...........................................56
5.5 Experiments..........................................60
5.5.1 Experimental Settings..............................60
5.5.2 Experimental Results...............................61
5.5.3 Analysis of Adaptive Fuzzy Experimental Results....64
Chapter6 Conclusions and Feature Work....................66
6.1 Conclusions..........................................66
6.2 Feature Work.........................................67
Appendix.................................................68
A. Wilcoxon matched paired signed rank test..............68
References...............................................72
Publication List.........................................78
[1] Turing, Alan, “Computing Machinery and Intelligence”, Mind, no. 236, pp.433-460 , 1950.
[2] L. A. Zadeh, “Fuzzy set”, Infomat. Control, vol. 8. pp. 338-353, 1965.
[3] Reynolds, C.W. “Flocks, herds and schools: a distributed behavioral modal”, Computer Graphics, 21(4), pp. 25-34, 1987.
[4] Heppner, F.and U. Grenander, “A stochastic nonlinear model for coordinated bird flocks”, In S. Krasner, Ed., The Ubiquity of Chaos. AAAS Publications, Washington, DC, 1990.
[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, vol. IV, Perth, Australia, pp. 1942-1948, 1995.
[6] J. Kennedy, R. Eberhart, Y. Shi, “Swarm Intelligence”, Morgan Kauffman, California, 2001.
[7] Bo Wang, GuoQiang Liang, ChanLin Wang, YunLong Dong, “A new kind of fuzzy particle swarm optimization fuzzy_pso algorithm”, Systems and Control in Aerospace and Astronautics, pp.-311, 2006.
[8] S. T. Hsieh, T. Y. Sun, C. C. Liu, S. J. Tsai, “Efficient Population Utilization Strategy for Particle Swarm Optimizer”, IEEE Transactions on Systems Man and Cybernetics-Part B, pp. 444-456, 2009.
[9] J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions”, IEEE Transactions on Evolutionary Computation, pp. 281–296, 2006.
[10] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,“ IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 255-239, Jun. 2004.
[11] C. J. Lin, C. H. Chen, C. Y. Lee, “Efficient Immune-Based Particle Swarm Optimization Learning for Neuro-Fuzzy Networks Design”, Journal of Information Science and Engineering, pp. 1505-1520, 2008.
[12] M. Pant, T. Radha, V. P. Singh, “A new particle swarm optimization with quadratic interpolation”, Proceedings of International Conference on Computational Intelligence and Multimedia Applications, IEEE Computer Society, pp. 55-60, 2007.
[13] S. L. Campbell and N. J. Rose, “A second order singular linear system arising in electric power systems analysis”, International Journal of Systems Science, Vol. 13, pp. 101-108, 1982.
[14] K. Liu and F. L. Lewis, “Continuous robust controller guaranteeing ESL for second-order dynamic systems”, International Journal of System Science, Vol. 24, pp. 2019-2031, 1993.
[15] K. Nonami, and T. Ito, “ synthesis of flexible rotor-magnetic bearing systems”, IEEE Trans. Control Syst. Technology, Vol. 4, No. 5, pp. 503-512, 1996.
[16] Y. Fujisaki, M. Ikeda and K. Miki, “Robust stabilization of large space structures via displacement feedback”, IEEE Trans. Auto. Contr., Vol. 46, pp. 1993-1996, 2001.
[17] K. Inoue, S. Yamamoto, T. Ushio and T. Hikihara, “Torque-based control of whirling motion in a rotating electric machine under mechanical resonance”, IEEE Trans. Autom. Control, Vol. 11, No. 3, pp. 335-344, 2003.
[18] H. Tasso, “On Lyapunov stability of dissipative mechanical systems”, Physics Letters A, Vol. 257, pp. 309-311, 1999.
[19] H. Tasso and G. N. Throumoulopoulos, “On Lyapunov stability of nonautonomous mechanical systems”, Physics Letters A, Vol. 271, pp. 413-418, 2000.
[20]M. Meisami-Azad, J. Mohammadpour and K. M. Grigoriadis, “An upper bound approach for control of collocated structural systems,” American Control Conference, July 11–13, New York City, USA, pp. 4631-4636, 2007.
[21]J. Sun, Q. G. Wang and Q. C. Zhong, “A less conservative stability test for second-order linear time-varying vector differential equations,” Int. J. Contr., vol. 80, pp. 523-526, 2007.
[22]K. Inoue and T. Kato, “A stability condition for a time-varying system represented by a couple of a second- and a first-order differential equations”, 43rd IEEE Conference on Decision and Control, Dec. 14–17, Atlantis, Paradise Island, Bahamas, pp. 2934-2935, 2004.
[23]M. I. Gil’, “Stability of linear systems governed by second order vector differential equations,” Int. J. Contr., vol. 78, pp. 534–536, 2005.
[24]K. Inoue, S. Yamamoto, T. Ushio, and T. Hikihara, “Elimination of jump phenomena in a flexible rotor system via torque control,” Control of Oscillations and Chaos, 2000. Proceedings. 2000 2nd International Conference, vol. 1, pp. 58-61, 2000.
[25]Y. Fang and T. G. Kincaid, “Stability analysis of dynamical neural networks,” IEEE Trans. Neural Networks, vol. 7, pp. 996–1006, 1996.
[26] H. Nizar, T. Lahdhiri, D. S. Joo, J. Weaver and A. Faysal, “Sliding mode neural network inference fuzzy logic control for active suspension systems”, IEEE Trans. Fuzzy Syst., Vol. 10 , pp234–246, 2002.
[27] J. Cao, H. Liu, P. Li and D. J. Brown, “State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies”, IEEE Trans. Intell. Transp. Syst., Vol. 9, pp. 392-405, 2008.
[28] N. Yagiz, Y. Hacioglu and Y. Taskin, “Fuzzy sliding-mode control of active suspensions”, IEEE Trans. Ind. Electronics, Vol. 55, pp. 3883-3890, 2008.
[29] Y. Shi, R. C. Eberhart, “A modified particle swarm optimization”, Proceedings of IEEE congress on Evolutionary Computation, pp. 69–73, 1998.
[30] K.E. Parsopoulos, M.N. Vrahatis, “UPSO: a unified particle swarm scheme”, Lecture series on Computer and Computational Sciences, vol. 1, pp. 868-873, 2004.
[31] P. J. Angeline, “Using selection to improve particle swarm optimization”, Proceedings of IEEE congress on Evolutionary Computation, pp. 84–89, 1998.
[32] V. Miranda, N. Fonseca, “EPSO-best-of-two-worlds meta-heuristic applied to power system problems”, Proceedings of IEEE congress on Evolutionary Computation, pp. 12-17, 2002.
[33] V. Miranda, “Evolutionary algorithm with particle swarm movements”, Proceedings of the 13th International Conference, ISAP, pp. 6-21, 2005.
[34] V. Miranda and N. Fonseca,” EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems”, Proceedings of IEEE Transmission Distribution Conference Exhibition, pp. 6-10, 2002.
[35] Ganesh K. Venayagamoorthy, Sheetal Doctor, “Navigation of Mobile Sensors Using PSO and Embedded PSO in a Fuzzy Logic Controller”, Industry Applocations Conference. 39th IAS Annual Meeting Conference Record of the 2004 IEEE, pp. 1200-1206, 2004.
[36] J. J. Liang, P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer”, Proceedings of IEEE on Swarm Intelligence Symposium, pp.124-129, 2005.
[37] R. Mendes, J. Kennedy., J. Nebes, “The fully informed particle swarm: simpler”, maybe better, IEEE Transactions on Evolutionary Computation, pp. 204–210, 2004.
[38] Qi Kang, Lei Wang, Qi-di Wu1, “Research on Fuzzy Adaptive Optimization Strategy of Particle Swarm Algorithm”, International Journal of Information Technology, vol.12, No.3, 2006.
[39] Ashraf M. Abdelbar, Suzan Abdelshahid, Donald C. Wunsch II, “Fuzzy PSO:A Generalization of Particle Swarm Optimization”, Proceedings of International Joint Conference on Neural Networks, 2005.
[40] M. Dorigo, V. Maniezzo and A. Colorni, “Ant System: Optimization by a colony of cooperating agents,” IEEE Trans. on SMC, vol. 26, no. 1,pp. 29-41, 1996.
[41] Fevrier Vadez, Patricia Melin, Olivia Mendoza, “A New Ecolutionary Method with Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms: The Case of Neural Network Optimization”, International Joint Conference on Neural Networks, 2008.
[42] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization”, in Proc. IEEE Int. Conf. Evol. Comput., Washington, DC, pp. 1945-1950, 1999.
[43] M. O’Neil, A. Brabazon, “Self-organizing swarm (SOSwarm): a particle swarm algorithm for unsupervised learning”, Proceedings of IEEE congress on Evolutionary Computation, pp. 634–639, 2006.
[44] K.E. Parsopoulos, M.N. Vrahatis, “On the computation of all global minimizers through particle swarm optimization”, IEEE Transactions on Evolutionary Computation, pp. 211–224, 2004.
[45] Y. Wang, Y. Yang, “Particle swarm optimization with preference order ranking for multi-objective optimization”, Information Sciences, pp. 1944-1959, 2009.
[46] N. Iwasaki, K. Yasuda, G. Ueno, “Dynamic parameter tuning of particle swarm optimization”, IEEJ Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[47] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, M. Dorigo, “Heterogeneous particle swarm optimizers”, Proceedings of IEEE congress on
Evolutionary Computation, pp. 698–705, 2009.
[48] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger, S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization”, Technical report, Nanyang Technological University, Singapore, 2005.
[49] R. Mendes, J. Kennedy., J. Nebes, “The fully informed particle swarm: simpler, maybe better”, IEEE Transactions on Evolutionary Computation, pp. 204–210, 2004.
[50] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space”, IEEE Trans. Evolutionary Computation, Vol. 6, No. 1, pp. 58–73, 2002.
[51] M. Liu, “Global exponential stability analysis for neutral delay-differential systems: an LMI approach”, International Journal of Systems Science, Vol. 37, No. 11, pp. 777-783, 2006.
[52] I. Kiguradze and Z. Sokhadze, “On singular functional differential inequalities”, Georgian Mathematical Journal, Vol. 4, pp. 259-278, 1997.
[53] P. Lancaster, “Theory of Matrices”, New York: Academic Press, 1985.
[54] Engelbrecht, Andries P. “Computational intelligence: an introduction”, J. Wiley & Sons, 2002.
[55] Wayne W. Daniel. “Applied nonparametric statistics”, Boston : PWS-KENT Pub, c1990.
[56] W.J. Conover. “Practical nonparametric statistics”, New York : John Wiley, 1998.
[57] 吳偉瑩,”二階微分系統的穩定度分析與控制器設計”,國立中央大學碩士論文,中華民國九十八年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top