跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐旺興
研究生(外文):Wang-hsing Hsu
論文名稱:計算智慧於次世代網路的應用
論文名稱(外文):Applying Computational Intelligence for Next Generation Networks
指導教授:吳中實
指導教授(外文):Jung-Shyr Wu
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:62
中文關鍵詞:高斯混合模型時間序列隱藏馬可夫模型計算智慧
外文關鍵詞:computational int Hidden Markov modelGaussian mixture modelstime series
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
次世代網路的設計是著眼於未來需求的一種通訊基礎架構。NGN技術特點是,以“IP融合”的網路架構,即在網際網路上的IP技術應用於次世代網路通訊。作為一種通訊基礎架構,次世代網路必需提供使用者在可靠性、耐久性以及服務品質等特性來達成“電信等級”的網路,同時提供易於使用的創新服務。網路效能的關鍵在於精確的時間和頻率。因此,次世代網路的底層技術必需要有更精確的時間和頻率。
另一方面,移動設備是次世代網路的終端。智慧型手機是個人通訊系統的用戶端,它具有與傳統手機、掌上型電腦和桌上型電腦之整合功能,且適用於啇業應用、娛樂、行動通訊和網路功能的設備。若想要讓使用者享用更多元的服務,設計者就必需內建更高階的人機互動應用程序在行動通訊設備中。
一個時間序列是指在連續且均勻時間點上測量所得的一組資料數列。時間序列分析,包括分析時間序列數據的方法,採掘有意義的統數據及其他特徵。時間序列預測模型之基礎,是一種利用已知的過去事件預測未來,以之前蒐集來的資料作為預測的技術。
本論文將提出幾個新穎的、有效能的、穩定的以及具方便性的方法,使用計算智慧於時間序列的訊號處理上,應用在行動通訊網路之頻率同步及手機上的使用者互動介面等領域。
在這個研究中,第二章,提出一種新的方法來解決頻率校正。設計一個控制系統,毎隔2秒蒐集控制信號,Fuzzy以及ANFIS控制器使用這些時間序列來預測新的控制訊號,進而控制從動裝置。第三和第四章,提出2種新的方法來解決智慧型手機上的三維手寫手勢識別。當使用者握住手機揮動,產生三維手寫手勢時,加速度感測器蒐集加速度資料時間序列,使用多組手寫手勢來訓練辯識模組,作為手寫手勢辯識使用。
The next generation network (NGN) is a communication infrastructure designed to address the needs of the coming age. A technical feature of the NGN is that it takes “IP convergence” network architecture, meaning that IP technology developed on the Internet is applied to the NGN. As a communication infrastructure, the NGN needs to provide carrier-grade qualities in terms of reliability, durability, and quality of service (QoS), while providing ease of new service creation. Time and frequency accuracy is critical to the efficiency of network. Thus, underling technologies of NGN needs more precise and accuracy on timing and frequency.
On the other hand, the mobile device is a terminal of NGN. Smart phone is a personal digital client, which is set with those usual functions of traditional mobile phone, PDA and computer and is mixed with features of business, entertainment, mobile and network. The more application we want to use, the more interact between human and device we need to build mobile devices in.
A time series is a sequence of data points, measured typically at successive times spaced at uniform time intervals. Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to forecast future events based on known past events, to predict data points before they are measured.
This dissertation addresses on some signal processing of time series using the methods of computational intelligence to finding a novel , effective, stable and convenient ways in network of frequency calibration and mobile device of user interface areas.
In this work, chapter 2, a novel method is proposed to solving frequency calibration. The control signal is collected every two second for getting a time series sequences in this control system. Fuzzy and ANFIS controller using those sequences to control slave device. Chapter 3 and 4, two novel methods are proposed to solving 3D handwriting gesture recognition on a smart phone. The mobile device collects accelerations using accelerometer when a user does a gesture with holding the device. The accelerations is a set of time series sequences. To train those sets to get some models for gesture recognition.
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2: Computational Intelligence . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Fuzzy Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Adaptive Neural-Fuzzy Inference System (ANFIS) . . . . . . . . . . . . . . . 6
2.3 Support vector machines(SVM) . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Hidden Markov model (HMM) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Gaussian mixture model (GMM) . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3: Frequency Calibration based on the ANFIS . . . . . . . . . . . . . . . 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Fuzzy Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 ANFIS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Experimental results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4: WLCS for 3D Handwriting Recognition on Handheld Devices . . . . . 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Theoretical Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 The Weighted LCS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 The Feasibility of Applying Weighted LCS in 3D Handwriting Recognition . . 27
4.3.1 Data Sets and Data Preprocessing . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
. . . . . . . . . . 11
Chapter 3: Frequency Calibration based on the ANFIS . . . . . . . . . . . . . . . 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Fuzzy Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 ANFIS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Experimental results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4: WLCS for 3D Handwriting Recognition on Handheld Devices . . . . . 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Theoretical Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 The Weighted LCS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 The Feasibility of Applying Weighted LCS in 3D Handwriting Recognition . . 27
4.3.1 Data Sets and Data Preprocessing . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
i
4.3.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . 30
4.4 The Proposed 3D Handwriting Recognition System . . . . . . . . . . . . . . . 35
4.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.3 Data Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.4 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Chapter 5: GMM for 3D Handwriting Recognition on Handheld Devices . . . . . 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 The typical exampe of HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 The Proposed 3D Handwriting Recognition System . . . . . . . . . . . . . . . 47
5.3.1 Data Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Chapter 6: Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1 Calibration of Time and Frequency . . . . . . . . . . . . . . . . . . . . 54
6.2.2 3D Handwriting Recognition . . . . . . . . . . . . . . . . . . . . . . . 55
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
[3GPP, 2005] 3GPP (2005). Requirements for support of radio resource management (fdd).
3GPP Release 6, V 6.12.0.
[Amir and Shalom, 2009] Amir, A. Z. G. and Shalom, B. R. (2009). Weighted lcs. IWOCA
2009, LNCS 5874, pages 36 – 47.
[Baek and Yun, 2008] Baek, J. and Yun, B. J. (2008). A sequence-action recognition applying
state machine for user interface. IEEE Transactions on Consumer Electronics,
54(2).
[Barbancho et al., 2007] Barbancho, J., Leon, C., Molina, F., and Barbancho, A. (2007).
Using artificial intelligence in routing schemes for wireless networks. Computer Com-
munications, 30(14-15):2802 – 2811. Data-aggregation;MAC protocols;Network algorithms;
OLIMPO;Routing paradigms;Wireless sensor nodes;.
[Baum, 1972] Baum, L. E. (1972). An inequality and associated maximization technique in
statistical estimation for probabilistic functions of markov processes. Inequalities, 3:1 –
8.
[Baum and Egon, 1967] Baum, L. E. and Egon, J. A. (1967). An inequality with applications
to statistical estimation for probabilistic functions of a markov process and to a
model for ecology. Bull. Amer. Meteorol. Soc., 73:360 – 363.
[Baum and Petrie, 1966] Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic
functions of finite state markov chains. Ann. Math. Statist., 37(6):1554 – 1563.
[Baum et al., 1970] Baum, L. E., Petrie, T., and Soules, G. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains.
Ann. Math. Stat., 41:164 – 171.
[Baum and Sell, 1967] Baum, L. E. and Sell, G. R. (1967). Growth functions for transformations
on manifolds. Pac. J. Math, 27(2):211 – 227.
[Chen and Petriu, 2008] Chen, Qing, N. D. G. and Petriu, E. M. (2008). Hand gesture
recognition using haar-like features and a stochastic context-free grammar. IEEE Trans.
on Instrumentation and Measurement, 57(8):1562 – 1571.
[Cho and Choi, 2006] Cho, S. J. and Choi, E. a. (2006). Two-stage recognition of raw
acceleration signals for 3-d gesture- understanding cell phones.
[Choi and Bang, 2006] Choi, E.-S. and Bang, W.-C. a. (2006). Beatbox music phone: Gesture
interactive cell phone using tri-axis accelerometer.
[Choi et al., 2006] Choi, S.-D., Lee, A., and Lee, S.-Y. (2006). On-line handwritten character
recognition with 3d accelerometer. pages 845–850.
[Cormen and Rivest, 1985] Cormen, T. H., C. E. L. and Rivest, R. L. (1985). Introduction
to Algorithms. The MIT Press.
[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
20:273 – 297.
[D. Drianko, 1992] D. Drianko, H. Hellendoorn, M. R. (1992). An Introduction to Fuzzy
Control. Springer-Verlag.
[Davis and Rougeaux, 1999] Davis, J. A. and Rougeaux, B. (1999). Development of a computer
model of a gps disciplined oscillator to aid error budget determination. volume 1,
pages 291 – 295, United States.
[Dubois D, 1998] Dubois D, P. H. (1998). An introduction to fuzzy systems. Clin. Chim.
Acta., (270):3 – 29.
[Eskelinen, 1999] Eskelinen, P. (1999). Observations on stability measurements of commercial
atomic clocks. Proceedings of the Annual IEEE International Frequency Control
Symposium, 1:186 – 189.
[Fawcett, 2006] Fawcett, T. (2006). An introduction to roc analysis. pages 861 – 874.
[Fraser, 1992] Fraser, J. (1992). What is artificial intelligence? Petroleum Review,
46(541):66, 68 – 69. Artificial intelligence disciplines;Knowledge-based systems;Natural
language;.
[Guler I, ] Guler I, U. E. Application of adaptive neuro-fuzzy inference system for detection
of electrocardiographic changes in patients with partial epilepsy using feature extraction.
Expert Syst. Appl., 33.
[IEEE, 2005] IEEE (2005). Ieee std. 802.16e-2005 and ieee 802.16-2004/cor1-2005. IEEE,
New York, USA.
[Isasi et al., 2007] Isasi, P., Quintana, D., Saez, Y., and Mochon, A. (2007). Applied computational
intelligence for finance and economics. Computational Intelligence, 23(2):111
– 116. Economics problems;Finance problems.
[Jang, 1993] Jang, J.-S. (1993). Anfis: adaptive-network-based fuzzy inference system.
IEEE Transactions on Systems, Man and Cybernetics, 23(3):665 – 685.
[Miller AS, 1990] Miller AS, Blott BH, H. T. (1990). Review of neural network applications
in medical imaging and signal processing. Med. Biol. Eng. Comput., (30):449 – 464.
[Mitra and Acharya, 2007] Mitra, S. and Acharya, T. (2007). Gesture recognition: a survey.
IEEE Trans. on Sys., Man, and Cyber, (3):311 – 324.
[Naso and Maione, 2001] Naso, D. and Maione, G. (2001). Recent developments in the application
of computational intelligence to multi-agent manufacturing control. volume 2,
pages 990 – 994, Melbourne, Australia. Fuzzy controller;Multi-agent manufacturing control;.
[Nicholls and Carleton, 2004] Nicholls, C. and Carleton, G. (2004). Adaptive ocxo drift
correction algorithm. pages 509 – 517, Montreal, Canada.
[R., 1989] R., R. L. (1989). Tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257 – 286.
[Rabiner and Juang, 1986] Rabiner, L. R. and Juang, B.-H. (1986). Introduction to hidden
markov models. IEEE ASSP magazine, 3(1):4 – 16.
[S. Kallio and J.Mantyjarvi, 2003] S. Kallio, J. K. and J.Mantyjarvi (2003). Online gesture
recognition system for mobile interaction. pages 2070 – 2076.
[TTA, 2004] TTA (2004). Specifications for 2.3 ghz band portable internet servicevphysical
layer. TTA, Korea.
[Tu et al., 2008] Tu, K.-Y., Hsu, W.-H., Wu, J.-S., and Liao, C.-S. (2008). Frequency
calibration based on adaptive neural-fuzzy inference system. pages 616 – 617, Broomfield,
CO, United states.
[Vapnik, 1999] Vapnik, V. (1999). The Nature of Statistical Learning Theory. Springer
Press, New York.
[Vasilakos and Spyrou, 2008] Vasilakos, A. V. and Spyrou, G. (2008). Computational intelligence
in medicine and biology: A survey. Journal of Computational and Theoretical
Nanoscience, 5(12):2365 – 2376. Computational intelligence;Ethics;Genomics;Machine
learning;Medical informatics;Proteomics;.
[Viterbi, 1995] Viterbi, A. J. (1995). Principles of Spread Spectrum Communication. Addison
Wesley.
[Wagner and Fischer, 1974] Wagner, R. and Fischer, M. (1974). The string-to-string correction
problem. J. ACM, 21:168 – 173.
[WG., 1990] WG., B. (1990). Use of an artificial neural network for data analysis in clinical
decision making: the diagnosis of acute coronary occlusion. Neural Comput., (2):480 –
489.
[Zhang and Lin, 2002] Zhang, Y.-Q. and Lin, T. (2002). Computational web intelligence
(cwi): Synergy of computational intelligence and web technology. volume 2, pages 1104
– 1107, Honolulu, HI, United states. Computational web intelligence;Electronic business;
Quality of intelligence;Web technology;Wireless networks.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 賴永海:〈宋元時期佛儒交融思想探微〉,《中華佛學學報》第5期(1992年)
2. 何善蒙:〈林兆恩「三教合一」的宗教思想淺析〉,《逢甲人文社會學報》第12期(2006年6月)
3. 李孝悌:〈十七世紀以來的士大夫與民眾──研究回顧〉,《新史學》第4卷第4期(1993年)
4. 黃麗月:〈台灣地區三言二拍研究的回顧與展望——以各大學博碩士文為範圍〉,《中國文化月刊》第226期(2002年5月)
5. 鄭志明:〈靈魂的生命觀與殯葬文化〉,《宗教哲學》第43期(2008年3月)
6. 朱鴻:〈明太祖與僧道——兼論太祖的宗教政策〉,《(國立臺灣師範大學)歷史學報》第18期(1990年6月)
7. 金明求:〈三言故事中佛教死亡思惟探索——超越因果輪迴後的涅槃世界〉,《中華佛學研究》第5期(2001年3月)
8. 錢存訓:〈印刷術在中國傳統文化中的功能〉,《漢學研究》第8卷第2期(1990年12月)
9. 黃心川:〈道教與密教〉,《中華佛學學報第》第12期(1999年7月)
10. 關尚智:〈《型世言》中之型世典範及所反映之社會亂象〉,《臺北技術學院學報》第29之第2期(1996年7月)
11. 王宗昱:〈評葛洪論儒道關係〉,《孔孟月刊》第31卷5期(1993年5月)
12. 劉苑如:〈形見與冥報:六朝志怪中鬼怪敘述的諷喻-一個「導異為常」模式的考察〉,《中國文哲研究集刊》第29期(2006年9月)
13. 邱澎生:〈明代蘇州營利出版事業及其社會效應〉第5卷第2期《九州學刊》(1992年10月)
14. 徐志平:〈從「三言」看明代的僧尼〉,《嘉義農專學報》第17期(1988年4月)
15. 胡萬川:〈乍看不起眼的那些角色——傳統小說人物試論之一〉,《古典文學》第7集(臺北:臺灣學生書局,1985年)