|
Reference [1]Turner, A.P., “Biosensors sense and sensitivity”, Science 290, pp. 1315–1317, 2000. [2]Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L.C., “Nanorobot Hardware Architecture for Medical Defense”, Sensors 8 (5), pp. 2932–2958, 2008. [3]Bernstein, J., “Uber den zeitlichen verlanf der negativen schwankung des nervenstroms“, The Journal of the Center for Archaeoastronomy 1, pp. 173-207, 1868. [4]Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B., “On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures”, Medical and Biological Engineering and Computing, 36, pp. 365-370, 1998. [5]Giaever, I., Keese, C.R. “Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue Culture”, IEEE Transactions on. Biomedical Engineering, 33, pp. 242-247, 1986. [6]Cortina, M., Esplandiu, M.J., Alegret, S., Valle M.del, “Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes”, Sensors and Actuators B. 118, pp. 84-89, 2006. [7]Clark, L., Lyons, C., “Electrode system for continuous monitoring in cardiovascular surgery”, Annals of the New York Academy of Sciences, 148, pp. 133-153, 1962. [8]David, F., “Amperometric Oxygen Electrodes”, Current Separations 16(1), pp. 19-22, 1997. [9]Newman, J.D. and Turner, A. P. F., “Home blood glucose biosensors: a commercial perspective”, Biosensor and Bioelectron., 20, pp.2435-2453, 2005. [10]Razumiene, J., Gureviciene, V., Vilkanauskyte, A., Marcinkeviciene, L., Bachmatova, I., Meskys, R., Laurinavicius, V., “Improvement of screen-printed carbon electrodes by modification with ferrocene derivative”, Sensors and Actuators B., 95, pp. 378-383, 2003. [11]Yang, L.H., Li, Y. B., Erf, G.F., “Interidigitated array microelectrode-base electrochemical impedance immunosensor for detection of Escherichia coil O157:H7”, Analytical Chemistry, 76, pp. 1107-1113, 2004. [12]Giaever and Keese, C.R., “Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture”, IEEE Transactions on Biomedical Engineering, BME-33(2), pp. 242-247, 1986. [13]Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K. and Wolf, B., “Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures”, Biosensors and Bioelectronics, 12(1), pp. 29-41, 1997. [14]Li J., Liu X., Guo M., Liu Y., Liu S., Yao S., “Electrochemical study of breast cancer cells MCF-7 and its application in evaluating the effect of diosgenin”, analytical sciences. 21, pp. 561–564, 2005. [15]Li, H.N., Ci, Y.X., “Electrochemical method for analyzing intracellular redox activity changes of the etoposide-induced apoptosis in HL-60 cells”, Analytica Chemica Acta, 416, pp. 221–226, 2000. [16]Feng, J., Luo, G.A., Jian, H.Y., Wang, R.G., An, C.C., “Voltammetric behavior of tumor cells U937 and its usefulness in evaluating the effect of caffeic acid”, Electroanalysis 12, pp. 513–516, 2000. [17]Tamanaha, C.R. et al, “Magnetic Method for DNA Detection on an Arrayed Solid State Device”, Micro Total Analysis Systems, pp. 444-446, 2001. [18]Zhang, Ning and David Appella, “Colorimetric Detection of Anthrax DNA with a Peptide Nucleic Acid Sandwich-Hybridization Assay”, Journal of the American Chemical Society, 129 (27), pp. 8424-8425, 2007. [19]Hintsche, R., Paeschke, M., Uhlig, A., Seitz, R., “Microbiosensor using electrodes made in Si-technology”, Frontiers in biosensonic, pp. 267-283, 1997. [20]Manfred Paeschke, Frank Dietrich, Albrecht Uhlig, Rainer Hintsche, “Voltammetric Multichannel Measurement using Silicon Fabricated Microelectrode Arrays”, Electroanalysis, 8, pp. 1-8, 1996. [21]M. Thompson, C. L. Arthur, G. K. Dhaliwal, “Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry”, Anal. Chem, 58, pp. 1206-1209, 1986. [22]G. Sauerbreyb, “Verwendung von Schwinquarzen zur Wagung dunner Schichten und zur Mikrowagung“. Zeitschrift fur Physik, 155, pp. 206-222, 1959. [23]J. F. Scott, C. A. P. de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, T. Ueda, D. Ueda and G. Kano, “Ferroelectric thin films in integrated microelectronic devices”, Ferroelectrics, 133, pp. 47-60, 1992. [24] M. Sayer and K. Sreenivas, “Ceramic thin film: fabrication and applications”, Science, 247, pp. 1056-1060, 1990. [25]Z. Song, C. Lin, “Microstructure and electrical properties of PbZr0.52Ti0.48O3 ferroelectric films on different Pt bottom electrodes”, Appl. Surf. Sci. 158, pp. 21-27, 2000. [26]S. J. Martin, H. L. Bandey, and R. W. Cernosek, “Equivalent circuit model for the thickness shear mode resonator with a viscoelastic film near film resonance”, Anal. Chem., 72, pp. 141–149, 2000. [27]K. Kobayashi, H. Yamada, K. “Matsushige, Dynamic force microscopy using FM detection in various environments”, Appl. Surf. Sci. 188, pp. 430-434, 2002. [28]W. Hung, S. W. Jiang, Y. R. Li, J. Zhu, Y. Zhang, X. H. Wei, H. Z. Zeng, “Crystallization behavior and domain structure in textured Pb(Zr0.25Ti0.48)O3 thin films by different annealing processes”, Thin Solid Films, 500, pp. 138-143, 2006. [29]C. D. E. Lakeman and D. A. Payne, “Processing effects in the sol-gel preparation of PZT dried gels, Powders, and Ferroelectric Thin Layers”, J. Am. Ceram. Soc., 75, pp. 3091-3096, 1992. [30]X. Zheng, Y. Zhou, Z. Yan, “Dependence of Crystalline, Ferroelectric and fracture toughness on annealing in Pb(Zr0.52Ti0.48)O3 thin films deposited by metal organic decomposition”, Mater. Res, 6, pp. 551-556, 2003. [31]S.Y. Chen, “Texture evolution and electrical properties of oriented PZT thin films”, Mater. Chem. Phys., 45, pp. 159-162, 1996. [32]P. Juan, Y. Hu, F. Chiu, J.Y. Lee, “The electrical properties of Metal–Ferroelectric (PbZr0.53Ti0.47O3)–Insulator–Silicon (MFIS) capacitors with different insulator materials”, Microelectron. Eng, 80, pp. 309–312, 2005. [33]S.K. Pandey, A. R. James, R. Raman, S. N. Chatterjee, A. Goyal, C. Prakash, T. C. Goel. “Structural, ferroelectric and optical properties of PZT thin films”, Physica B, 369, pp. 135–142, 2005. [34]H. Kanai, Y. Yamashita, “Investigation of factors affecting electrical properties of PZT thin film capacitance”, IEEE EI paper, 121-124, 1998. [35]G. Yi, Z. Wu, M. Sayer, “Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: electrical, option, and electro-optic properties”, J. Appl. Phys. 64, pp. 2717-2724, 1998. [36]J. Weber, W. M. Albers, J. Tuppurainen, M. Link, R. Gabl, W. Wersing, M. Schreiter, “Shear mode FBARs as highly sensitive liquid biosensors”, Sens. Actuator A, 128, pp. 84-88, 2006. [37]R. Cernosek, S. J. Martin, A. R. Hillman, and H. L. Bandey, “Comparison of lumped-element and transmission-line models for thicknessshear-mode quartz resonator sensors”, IEEE Trans. Ultrason., Ferroelect., Freq. Control., 45, pp. 1399–1407, 1998. [38]Spyridon K., Ioannis L., Ilias K., Georgios I., Theofanis K., Athanasios K.,Konstantinos T., Nikolaos T., Lambros A., “Microalbuminuria: A strong predictor of 3-year adverse prognosis in nondiabetic patients with acute myocardial infarction” , Am. Heart J., 149, 5, pp. 840-845, 2005. [39]Lewis E. J., Hunsicker L. G., Clarke W. R., “Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes”, N. Engl. J. Med., 345, pp.851–860, 2001. [40]Riss T., O’Brien M., Morvec R., “Choosing the Right Cell-Based Assay for Your Research”, Cell Notes, 6, pp. 6-12, 2003. [41]Rica R. de.la. , Cesar F. S., Baldi A., “Polysilicon interdigitated electrodes as impedimetric sensors”, Electrochem. Commun., 8, pp. 1239-1244, 2006. [42]Ma Z., Masaya K., Ramakrishna S., “Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption” , Journal of Membrane Science, 282, 1-2, pp. 237-244, 2006. [43]Altintas E. B., Denizli A., “Efficient removal of albumin from human serum by monosize dye-affinity beads” , J. Chromatogr. B, 832, 2, pp. 216-223, 2006. [44]Yang L., Li Y., Griffis C.L., Johnson M.G., “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium”, Biosens. Bioelectron. 19, pp.1139–1147, 2004. [45]Kassab A., Yavuz H., Odabasi M., Denizli A., “Human serum albumin chromatography by Cibacron Blue F3GA-derived microporous polyamide hollow-fiber affinity membranes”, Journal of hromatography B:Biomedical Sciences and Applications, 746, 2, pp. 123-132, 2000. [46]Liu Q., Yu J., Xiao L., Tang J. C. On, Zhang Y., Wang P. and Yang M., “Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays”, Biosensors and Bioelectronics, 24. pp. 1305-1310, 2009. [47]Stett A., Egert U., Guenther E., Hofmann F., Meyer T., Nisch W., Haemmerle H.,“ Biological application of microelectrode arrays in drug discovery and basic research”, Anal. Bioanal. Chem. 377, pp. 486-495, 2003. [48]Stenger D.A, Gross G.W., Keefer E.W., Shaffer K. M., Andreadis J. D., Ma W., Pancrazio J.J., “Detection of physiologically active compounds using cell-based biosensors”, Trend. Biotechnol, 19, pp. 304-309, 2001. [49]Shuilleabhain S. Ni, Mothersill C., Sheehan D., O’Brien N.M., O’Halloran J., Van Pelt F.N.A.M., Davoren M., “In vitro cytotoxicity testing of three zinc metal salts using established fish cell lines”, Toxicol. in Vitro. 18, pp. 365-376, 2004. [50]White R.E., ”High-Throughput Screening in Drug Metabolism and Pharmacokinetic Support of Drug Discovery”, Phamacol Annu. Rev.Toxicol, 40, pp. 133-157, 2000. [51]Riss T., O’Brien M., Morvec R., ”Choosing the Right Cell-Based Assay for Your Research”, Cell Notes. 6, pp. 6-12, 2003. [52]Keese C.R., Giaever I., “A biosensor that monitors cell morphology with electrical fields”, IEEE Eng. Med. Biol., 13, pp. 402-408, 1994. [53]Rica R. de. la., Cesar F. S., A. Baldi., “Polysilicon interdigitated electrodes as impedimetric sensors”, Electrochemistry Communications, 8, pp. 1239-1244, 2006. [54]Hsiung L. C., Yang C. H., Chiu C.L., Chen C. L., Wang Y., Lee H., Cheng J. Y., Ho M. C., Wo A. M., “A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells”, Biosensors and Bioelectronics. 24, pp. 869-875, 2008. [55]Varshney M., Li Y., ”Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium”, Talanta, 74, pp. 518-525, 2008. [56]Yang L., Li Y., Erf G. F., ”Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7”, Anal. Chem. 76, pp. 1107-1113, 2004. [57]Varshney M., Li Y., Srinivasan B., Tung S., “A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples“, Sensors and Actuators B. 128, pp. 99-107, 2007. [58]Varshney M., Lin Y., “Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples”, Biosensors and Bioelectronics, 22, pp. 2408-2414, 2007. [59]Ruan C., Yang L., Li Y., “Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy”, Anal. Chem., 74, pp. 4814-4820, 2002. [60]Radke S. M., Alocilja E. C., “A microfabricated biosensor for detecting foodborne bioterrorism agents”, IEEE Sensors Journal. 5, pp. 744-750, 2005. [61]Bang L., Li Y., “AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7”, Bosensors and Bioelectronics. 20, pp. 1407-1416, 2005. [62]Berdat D., Marin A., Herrera F., Gijs M. A.M., ”DNA biosensor using fluorescence microscopy and impedance spectroscopy”, Sensors and Actuators B. 118, pp. 53-59, 2006. [63]Hang T. C., Anthony G., “Frequency dependent and surface characterization of DNA immobilization and hybridization”, Biosensors and Bioelectronics. 19, pp. 1537-1548, 2004. [64]Yang L., ” Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes”, Talanta. 74, pp. 1621-1629, 2008. [65]Yeon J. H., Park J. K., “Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip”, Analytical Biochemistry. 341, pp. 308-315, 2005. [66]Guo M., Chen J., Yun X., Chen K., Nie L., Yao S., “Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy”, Biochimica et Biophysica Acta. 1760, pp. 432-439, 2006. [67]Arndt S., Seebach J., Psathaki K., Galla H. J., Wegener J., “Bioelectrical impedance assay to monitor changes in cell shape during apoptosis”, Biosensors and Bioelectronics. 19, pp. 583-594, 2004. [68]Mishra N. N., Retterer S., Zieziulewicz T. J., Isaacson M., Szarowski D., Mousseau D. E., Lawrence D. A., Turner J. N., “On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis”, Biosensors and Bioelectronics. 21, pp. 696-704, 2005. [69]Bouafsoun A., Othmane A., Jaffrezic-Renault N., Kerkeni A., Thoumire O., Prigent A.F., Ponsonnet L., ”Impedance endothelial cell biosensor for lipopolysaccharide detetion”, Materials Science and Engineering C.28, pp. 653-661, 2008. [70]Wolf P., Rotherme A., Beck-sickinger A. G.,. Robitzki A. A, “Microelectrode chip based real time monitoring of vital MCF-7 mamma carcinoma cells by impedance spectroscopy”, Biosensors and Bioelectronics. 24, pp. 253-259, 2008. [71]Huang X., Greve D.W., Nguyen D.D., Domach M.M., “Impedance based biosensor array for monitoring mammalian cell behavior”, IEEE Sensors, 1, pp, 304-309, 2003. [72]Brischwein M., Herrmann S., Vonau W., Berthold F., Grothe H., Motrescu E. R., B. Wolf, “The use of screen printed electrodes for the sensing of cell responses”, AFRICON, pp. 1-5, 2007. [73]Varshney M., Li Y., ” Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells”, Biosensors and Bioelectronics. 24, pp. 2951-2960, 2009. [74]Zou Z., Kai J., Rust M. J., Han J., Ahn C. H., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A. 136, pp. 518-526, 2007. [75]Gerwen P. V., Laureyn W., Laureys W., Huyberechts G., Beeck M. O. D., Baert K., Suls J., Sansen W., Jacobs P., Hermans L., Mertens R., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators B. 49, pp. 73-80, 1998. [76]Laureyn W., Nelis D., Gerwen P. Van, Baert K., Hermans L., Magnee R., Pireaux J. J., Maes G., “Nanoscaled interdigitated titanium electrodes for impedimetric biosensing”, Sensors and Actuators B. 68, pp. 360-370, 2000. [77]M. Yi, K. H. Jeong, and L. P. Lee, “Theoretical and experimental study towards a nanogap dielectric biosensor”, Biosensors and Bioelectronics. 20, pp. 1320-1326, 2005. [78]W. Cai, J. R. Peck, D. W. Van der Weide, and R. J. Hamers, “Direct electrical detection of hybridization at DNA-modified silicon surfaces”, Biosensors and Bioelectronics. 19, pp. 1013-1019, 2004. [79]G. Laurent, L. M. Hagelsieb, D. Lederer, P. E. Lober, D. Flandre, J. Remacle, and J. P. Raskin, “DNA electrical detection based on inductor resonance frequency in standard CMOS technology”, IEEE Solid-State Circuits Conference., pp. 337-340, 2003. [80]J. Li, C. Xu, Z. Zhang, Y. Wang, H. Peng, Z. Lu, and M. Chan, “A DNA-detection platform with integrated photodiodes on a silicon chip”, Sensors and Actuators B. 106, pp. 378-382, 2005. [81]F. F. Bier, F. Kleinjung, and F. W. Scheller, “Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor”, Sensors and Actuators B. 38, pp. 78-82, 1997. [82]R. de.la.Rica, F. S. Cesar, and A. Baldi, “Polysilicon interdigitated electrodes as impedimetric sensors”, Electrochemistry Communications. 8, pp. 1239-1244, 2006. [83]S. J. Park, T. A. Taton, C. A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes”, Science. 295, pp. 1503-1506, 2002. [84]C. A. Mirkin, “Programming the assembly of Two-and Three Dimensional Architecture with DNA and nanoscale Inorganic building blocks,” Inorganic Chemistry”, Inorganic Chemistry. 39, pp. 2258-2272, 2000. [85]C. Berggren, P. Stålhandske, J. Brundell, and G. Johansson, ” A Feasibility Study of a Capacitive Biosensor for Direct Detection of DNA Hybridization”, Electroanalysis. 11 3, pp. 156-160, 1999. [86]L. A. Chrisey, G. U. Lee, and C. E. O’Ferrall, “Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Research. 24, pp. 3031-3039, 1996. [87] T. Andrew Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA Array Detection with Nanoparticle Probes”, Science. 289, pp. 1757-1760, 2000. [88]M. Ikeda, K. Nakazato, H. Mizuta, M. Green, D. Hasko, and H. Ahmed, “Frequency-dependent electrical characteristics of DNA using molecular dynamics simulation”, Nanotechnology. 14, pp. 123-127, 2003.
|