|
H. Brezis and F. Merle; Uniform estimates and blow -up behavior for solutions of -Delta u=V(x) e^u in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1254.
D. Bartolucci and G. Tarantello; The Liouville Equation with Singular Data: A Concentration -Compactness Principle via a Local Representation Formula, J. Differential Equations Vol. 185, No. 1(2002), pp. 161-180.
---{}---; Topological degree for a Liouville type equation with a singular source, preprint.
C.-C.~Chen and C.-S.~Lin and Guofang Wang; Concentration Phenomena of Two-Vortex Solutions in a Chern-Simons Model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(5), Vol. III (2004), pp. 367-397.
K. S. Chou and Tom Yau-Heng Wan; Asymptotic radial symmetry for solutions of Delta u+e^u=0 in a punctured disc, Pacific J. Math. Volume 163, Number 2 (1994), 269-276.
B.H. Dayton and Z. Zeng; Computing the Multiplicity Structure in Solving Polynomial Systems, Proceedings of the 2005 international symposium on Symbolic and algebraic computation, 116-123.
W. Fulton; Intersection Theory, Erge. Math. ihr. Gren.;3. Folge, Bd 2, Springer-Verlag 1984.
Y.Y. Li and I. Shafrir, Blow up analysis for solutions of -Delta u=V(x)e^u in dimension two, Ind. Univ. Math. J. 43 (1994) (4), pp. 1255–1270.
Tien-Yien Li, Tim Sauer and James A.Yorke; Numberical solution of a class of deficient polynomial systems, SIAM J Number. Anal., Vol24, No. 2, 1987.
C.-S.~Lin and C.-L.~Wang; Elliptic functions, Green functions and the mean field equations on tori, to appear in Annals of Mathematics, accepted in April 2008. arXiv:math/0608358.
---{}---; A function theoretic view of the Mean field equations on tori, Proceeding of the International Conference on Geometric Analysis (TIMS, Taipei 2007), International Press 2008.
---{}---; Singular mean field equations on tori, preprint 2009.
http://www.valdostamuseum.org/hamsmith/Weyl.html.
|