跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育展
研究生(外文):Yu-Chan Chang
論文名稱:從高斯-波涅與黎曼-羅赫定理看指標定理
論文名稱(外文):The Index Theorem from Gauss-Bonnet and Riemann-Roch Theorem
指導教授:邱鴻麟邱鴻麟引用關係
指導教授(外文):Hung-Lin Chiu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:28
中文關鍵詞:高斯-波涅指標定理黎曼-羅赫
外文關鍵詞:index theoremRiemann-RochGauss-Bonnet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要證明二個在幾何上重要的定理:Gauss-Bonnet定理與Riemann-Roch定理,且與指標定理做一個連結。第一章主要是用陳省身在1943年發表的”內蘊”手法來證明二維流型上的Gauss-Bonnet定理。第二章主要是介紹古典的Riemann-
Roch定理,以三種不同的形式給出,並在第三章證明第三種上同調化的形式。第四章是藉由計算二個橢圓算子的指標得到流形上的拓樸不變量,此為Atiyah-
Singer指標定理。
In this thesis, we prove two important theorems in geometry. In chapter one, we state the Gauss-Bonnet theorem on even dimensional manifold and give the detail of the proof of two dimensional case. The proof is based on the paper "A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifold", published by S.S. Chern in 1943. A little history of this theorem is included. Chapter two and three mainly focus on Riemann-Roch theorem on one-dimensional complex manifold, Riemann surface. We establish some basics on Riemann surface in chapter two, such as divisors, holomorphic line bundles, sheaves and cohomology on sheaves, also Hodge theorem in the end of this chapter. The proof of Riemann-Roch is in the chapter three. In chapter four, we show a theorem by calculating two analytic indices of two operators, which give us Gauss-Bonnet and Riemann-Roch theorem. This theorem is the Atiyah-Singer index theorem, proved by Atiyah and Singer in 1963.
1 Gauss-Bonnet Theorem 1
1.1 History of Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . 1
1.2 Fundamental of Riemannian Geometry . . . . . . . . . . . . . . . 2
1.3 Intrinsic Proof for Two-Manifold . . . . . . . . . . . . . . . . . . 4
2 Riemann-Roch Theorem 7
2.1 Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Holomorphic Line Bundles and Sheaves . . . . . . . . . . . . . . 8
2.3 Cohomology On Sheaves . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Hodge Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Proof of Riemann-Roch Theorem 16
3.1 Serre''s Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Proof of Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . 17
4 Atiyah-Singer Index Theorem 20
4.1 Atiyah-Singer Index Theorem . . . . . . . . . . . . . . . . . . . . 20
4.2 Two Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Reference 23
[1] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for
closed Riemannian manifolds, Annals of Math. 45(1944), 747-752
[2] S. S. Chern, On the curvatura integra in a Riemannian manifold, Annal
of Math., 46(1945), 674-684
[3] K. Kodaira, J. Morrow, Complex manifolds, Holt, Rinehart, and Winston,
New York, 1971
[4] Do Carmo, Di®erential geometry of curves and surfaces, Prentice Hall,
1976, ISBN:0-13-212589-7
[5] P.A. Gri±ths, J. Harris, Principles of algebraic geometry, Wiley, 1978,
ISBN:0-471-05059-8
[6] Lars V. Ahlfors, Complex analysis, third edition, McGraw-Hill, 1979,
ISBN:0-07-085008-9
[7] S. S. Chern, Lectures on di®erential geometry, Chinese version, Lian-Jing
Press, 1990, ISBN:957-08-0296-0
[8] Wu-Hung-Hsi, Introdution to compact Riemann surface, Chinese version,
Lian-Jian Press, 1990, ISBN:957-08-0297-9
[9] Wu Hung-Hsi, Chen Wei-Huan, Topics in Riemannian geometry, Beijing
Universty Press, 1993, ISBN:7-301-02081-3
[10] Caniel Henry Gottlieb, All the way with Gauss-Bonnet and the sociology
of mathematics, The American Mathematical Monthly, Vol. 103, No.6
(1996), 457-469
[11] Yu Yan-Lin, The index theorem and the heat equation method, World
Scienti¯c Publishing, 2001, ISBN:9810246102
[12] Mei Jia-Qiang, Lectures on Rieann surface, Nanjing University,
http://math.nju.edu.cn/ meijq/RiemannSurface.pdf
[13] Wu Hung-Hsi, Historical developent of the Gauss-Bonnet theorem, science
in China press, April, 2008, Vol. 51, No.4, 777-784
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文