|
[1] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Annals of Math. 45(1944), 747-752 [2] S. S. Chern, On the curvatura integra in a Riemannian manifold, Annal of Math., 46(1945), 674-684 [3] K. Kodaira, J. Morrow, Complex manifolds, Holt, Rinehart, and Winston, New York, 1971 [4] Do Carmo, Di®erential geometry of curves and surfaces, Prentice Hall, 1976, ISBN:0-13-212589-7 [5] P.A. Gri±ths, J. Harris, Principles of algebraic geometry, Wiley, 1978, ISBN:0-471-05059-8 [6] Lars V. Ahlfors, Complex analysis, third edition, McGraw-Hill, 1979, ISBN:0-07-085008-9 [7] S. S. Chern, Lectures on di®erential geometry, Chinese version, Lian-Jing Press, 1990, ISBN:957-08-0296-0 [8] Wu-Hung-Hsi, Introdution to compact Riemann surface, Chinese version, Lian-Jian Press, 1990, ISBN:957-08-0297-9 [9] Wu Hung-Hsi, Chen Wei-Huan, Topics in Riemannian geometry, Beijing Universty Press, 1993, ISBN:7-301-02081-3 [10] Caniel Henry Gottlieb, All the way with Gauss-Bonnet and the sociology of mathematics, The American Mathematical Monthly, Vol. 103, No.6 (1996), 457-469 [11] Yu Yan-Lin, The index theorem and the heat equation method, World Scienti¯c Publishing, 2001, ISBN:9810246102 [12] Mei Jia-Qiang, Lectures on Rieann surface, Nanjing University, http://math.nju.edu.cn/ meijq/RiemannSurface.pdf [13] Wu Hung-Hsi, Historical developent of the Gauss-Bonnet theorem, science in China press, April, 2008, Vol. 51, No.4, 777-784
|