跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜昇翰
研究生(外文):Sheng-Han Tu
論文名稱:整合特殊晶粒製程與二次光學元件之發光二極體照明模組
論文名稱(外文):Integration of special chip process and secondary elements for light emitting diodes illumination module
指導教授:張正陽張正陽引用關係
指導教授(外文):Jenq-yang Chang
學位類別:博士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:147
中文關鍵詞:二次光學元件發光二極體光萃取效率固態照明
外文關鍵詞:light extraction efficiencysolid state lightinglight emitting diodessecondary optical elements
相關次數:
  • 被引用被引用:0
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為因應日漸短缺的地球資源,因此各國均致力於新能源與節能科技。因此採用低能耗、體積小與高使用壽命之發光二極體為光源之照明技術,已經成為各國爭相發展的目標。本論文整合特殊晶粒製程與二次光學元件之照明模組,以為各式光源應用;先將微結構製程與材料特性改質技術整合至發光二極體晶粒製程中,對發光特性進行調制,再針對調制後的光學特性設計可匹配之二次光學元件,整合成照明模組,豐富發光二極體之發光特性,並使其在液晶背光模組、投影機與路燈應用上取得良好的表現。
本論文採用的製程技術涵括:室溫壓印、表面粗化、電極特性改質、電極結構優化,與共振模態波濾波器(Guided mode resonance filter)元件來提升發光二極體的出光效率,並調制其發光特性。二次光學元件則用來進行發光二極體之遠場光型(Far-field pattern)調制,以達到準直或擴展的遠場光型,以滿足不同的照明需求。
為提升發光二極體的出光效率,並調制其發光特性,本論文採用無熱應力之室溫壓印技術,配合化學及物理性質穩定之旋轉塗佈玻璃(Spin on glass)壓印材料,製作一維與二維之表面結構於發光二極體的晶粒表面。它可得到17%至35%的外部出光效率增益;在發光特性上,閃曜式光柵(Blazed grating) 結構可以得到主發光強度偏折20°的遠場光型,而二維柱狀結構,則可以得到光強均勻分布散角達110°之擴展的遠場光型;這樣的光源特性,可應用在滑鼠及路燈等照明應用。
傳統鉻金電極之吸收係數大,導致發光二極體的出光效率不彰。因此本研究採用高反射的銀鍍層來增加鉻金電極的底面反射率,經由數值模擬的分析,此可以大幅提升發光二極體的側面出光率;並透過p-型氮化鎵重摻雜的方法來降低該銀鍍層與p-型氮化鎵的接面電阻;濕蝕刻則用來增加透明氧化導電薄膜的表面粗糙度,以進一步提升發光二極體的外部取光效率。總合上述晶粒製程後,其電特性並未受到不良影響,而發光二極體的正面與側面出光率可大幅改善,總體光萃取效率可以增加達30%。
為了探究發光二極體在高電流注入下所產生的電流擁擠(Current crowding)效應,本論文配合機械所陳志臣老師實驗室所開發之三維發光二極體電流數值模型以模擬空間電流散佈,並用實驗結果以驗證不同n-電極結構(包括不同遮蔽面積與不同空間密度)對薄膜(Thin GaN)發光二極體電流密度的影響。實驗結果顯示不同n電極結構所造成的電流擴散趨勢與模擬結果相當吻合。模擬與實驗結果均指出,電流擴散效應較好的n-電極結構,其電壓-電流與電流-出光特性均較優秀,在注入電流達1安培的狀況下,電流擴散較好的n-電極之出光效率的增益可逹11%。
為了純化發光二極體的發光色度,使其在三色背光模組的應用上取得較佳的色域表現,本論文針對發光頻寬較寬的綠光二極體的頻譜進行縮減設計。為了適應綠光發光二極體的多角度出射與非極化的出光特性,本論文採用雙填充因子(Filling factor)設計了一個波導模態共振元件,以提供帶通頻帶寬(30nm)、大的角度容忍度(15度入射容忍度)與低的極化相依性(適用於亂數極化光),並將其與綠光發光二極體整合成背光模組,可將綠光發光二極體的頻譜寬度縮減為原來的二分之一。經由色域模擬顯示這樣的背光模組,可使色域表現由原本的122提升至137。
本研究整合壓印技術所得到的擴展遠場二極體及反射式二次光學元件,以開發一適用於路燈之照明光源。本論文藉由貝茲曲線設計一高度為0.3厘米,直徑為1.05厘米之杯狀反射光二次光學元件,以減少光在穿透不同介面時的浮瑞涅損耗(Fresnel loss)。在整合壓印發光二極體與該二次光學元件後,相較於現行路燈光源,該光源之發光表現為在出光角度正負40度的區間中,可提升40%的照明亮度;在出光角度正負55度的區間中,維持了一恆定的照明強度;在出光角度正負70度上所產生的出光峰值,則可彌補光強餘弦衰減;最後則是削減了出光角度大於正負85度的光強以抑制刺眼的炫光效應。
For the sake of energy shortage, the developments of new energy and energy saving have attracted the interests of advanced nations. The light emitting diodes possesses advantages such as low power consumption, compact volume and long life time so that it has took the place of conventional light source gradually. In this thesis we developed a series of methods that to crossed the chip process and lighting module enhance the light performance of light emitting diodes. We integrated special chip process and secondary optics element to form a lighting module that can be applied to different applications such as back light module of liquid crystal display, projector and street lamp.
The adopted methods include imprinting technique, pad reflector, surface roughness, ThinGaN LED pattern design, the guided mode resonance (GMR) filter to enhance the output power efficiency of LED and modulate the lighting performances. The secondary optics elements were used to modulate the far-field pattern of LED to achieve an expanded or a collimator far-field pattern.
In order to increase the light extraction efficiency and modulate the lighting performance of LED, we adopted the thermal stress free and room temperature imprinting technique. We imprinted the one and two dimension onto the chip surface by stable material SOG. After imprinting structure application, the output power enhancement reached 17% to 35%. Furthermore, the blazed grating can deflect the peak intensity of far-field pattern to 20° and the two dimensional structure can achieve an expansion far-field pattern.
A GaN-based light-emitting diode (LED) with non-alloyed metal contacts and textured Ga-doped ZnO (GZO) contact layer were served as the n- and p-type electrode pads, respectively. Compared with the conventional LEDs with flat surface and Cr/Au metal contacts, the non-alloyed Ag/Cr/Au contacts used in the present experimental LEDs play the role of reflector to prevent the emitted light from absorption by the opaque electrode pads. Enhancement of light output power observed from the experimental LEDs is also due to the textured GZO layer that can disperse the angular distribution of photons at the GZO/air interface. With an injection current of 20mA, the enhancement of the LOP approximately has a 30% magnitude compared with conventional GaN-based LEDs. Finally, the numerical method was used to discussion the relation between output power and pad reflectivity.
Several n-type electrode patterns were designed to evaluate the current spreading effects in high power ThinGaN light emitting diodes. A proposed three dimensional numerical simulation was used to investigate the current spreading distributions. The experimental current spreading tendencies in various n-type electrodes were consistent with the simulation results. The maximum lighting output power was enhanced to 11% in our electrode pattern designs. The current-voltage and luminance-current performance of LED chips can apparently be improved with a better current spreading distribution. Therefore, this three dimensional simulation method could be used for the advanced analysis and optimization of LED performance.
A simple and hybrid combination of a green light-emitting diode (LED) chip with an asymmetric guided-mode resonance (GMR) filter is proposed to reduce the full-width-at-half-maximum (FWHM) of LED emission spectrum for the LED backlight system. The color gamut consisting of multiple LEDs is significantly expanded from 122 to 137. It also possesses stable transmittance within 5 degree incident angle for the unpolarized light. This GMR filter provides superior transmittance efficiency (84%), and FWHM performance (15nm). The fabrication tolerances of asymmetric GMR are also analyzed and discussed.
A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the convectional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.
Abstracts (in Chinese)…………………...……………………………………...I
Abstracts...………………….…………………………………………………IV
Contents...…………………………………………………………………….VII
List of Figures………………………………………………………………….X
List of Tables…………………………………………………………….....XVII
Chapter 1 Introduction…..…………………….………..………………..1
Chapter 2 Paper review……………………………………………..8
2.1 Light extraction efficiency enhancement………………………………..8
2.2 Far-field pattern modulation……………………………………………18
Chapter 3 The light enhancement and far-field pattern modulation by the imprinting structure.…..…..…..….…23
3.1 Introduction……………………………………………….….…..……23
3.2 Experiment of LED chip and imprinting process………….…….……24
3.3 Output power enhancement and electric performance.……..................30
3.4 Brief conclusion.…………………………………………………........39
Chapter 4 Improvement of electrode property and structure for LED light extraction……...…………...................……..40
4.1 Pad reflector and TCL roughness……………………………………...40
4.1.1 Introduction…………………………………….….…………….40
4.1.2 Experiment chip and pad reflector process…………….………..41
4.1.3 Simulation of output power enhancement………………………48
4.1.4 Brief conclusion………………………………….……………..51
4.2 The n-pad pattern designs on thin GaN LED…….…….…….……...…52
4.2.1 Introduction………………………………………..………………52
4.2.2 Thin GaN fabrication and current density distribution simulation……………………………….……………………....53
4.2.3 Current spreading and electric performance……………….……...58
4.2.4 Brief conclusion……………………………………………….…..68
Chapter 5 Emitting spectrum width reduction by high angular tolerance GMR filter……...…….…………………….……69
5.1 Introduction……………………...……..……………………………...69
5.2 The principle of GMR filter………………...………………………….69
5.3 Angular tolerance analysis………………………...….………………..75
5.4 Color gamut analysis versus fabrication tolerance………....………….77
5.5 Brief conclusion………………………………………………………..79
Chapter 6 Secondary optics elements design for light source module………………………………………………………....81
6.1 Collimator elements……………………………………………………81
6.1.1 Introduction……………………………………………………...81
6.1.2 Simulation methods……………………………………………..81
6.1.3 Description of the new collection systems…………..………….83
6.1.4 Tolerance analysis…………………………………….…….......91
6.1.5 Brief conclusion………………………………………………...93
6.2 Integration of non-Lambertian LED and reflective optical element as efficient street lamp…………..………………………………………...95
6.2.1 Introduction…………..………………………………………….95
6.2.2 Imprinting and chip process…….…………….…………………98
6.2.3 Measurements………………………..……….…………..……102
6.2.4 Optical design and simulation…………...…………………….105
6.2.4 Brief conclusion……………………………..…………………109
Chapter 7 Summary and future work…….…………….……………111
Reference………………..……………………………………………….…116
Publication List………………………………………………………..…..129




List of Figures
Fig. 1-1 Three parts of LED industry……………………………...…………….3
Fig. 1-2 The research issues of LED chip……………………………………….3
Fig. 1-3 The native far-field pattern of planar LED chip…………..…..………..5
Fig. 2-1 Analysis of the emitting light trapped inside different structure……….8
Fig. 2-2 The transmittance of transparent conductive layer versus wavelength.10
Fig. 2-3 The applied voltage versus current for different transparent conductive layer…………………………………………………………………...10
Fig. 2-4 The roughness of GaN surface………………………………………...11
Fig. 2-5 The photonic crystal fabricated on the GaN LED surface…………….11
Fig. 2-6 The structure scheme of photonic crystal applied on to the p-GaN surface...………………………………………………………………12
Fig. 2-7 The output power and electrical performance versus different structure period of photonic crystal LED chip………………………………….13
Fig. 2-8 The defect density difference resulted from the (a) conventional sapphire substrate and (b) pattern sapphire substrate…………………15
Fig. 2-9 The scattering photons caused by the pattern sapphire substrate……..16
Fig. 2-10 The different pad patterns for the current simulation………………..17
Fig. 2-11 The simulation result of output power and light extraction efficiency in different pad structures………………………………………………..17
Fig. 2-12 The structure of LED projector………………………………………19
Fig. 2-13 The theory of taper light pipe for LED projector application………..19
Fig. 2-14 The LED street lamp composed of the LED lighting module, the secondary optics devices and the thermal module……………………20
Fig. 2-15 The intensity distribution on the illumination area by an LED street lamp..………………………………………………………………….21
Fig. 3-1 The Lambertian far-field pattern of a native LED bare chip……..…...24
Fig. 3-2 The ray deflection to an expected direction by the embossed microstructure…………………………………………………………25
Fig. 3-3The flow chart of imprinted LED process: (a) the LED mesa etching (b) The deposition of Ni/Au TCL and the spinning of SOG (c) The imprinting process with Si mold and 1000 N pressure and (d) The additional SOG removing and pad deposition...………..……………...27
Fig. 3-4 The optical microscope pictures of the imprinting structures: (a) The optical microscope picture of SOG after soft baking (b) The optical microscope picture of 1D blazed grating (c) The optical microscope picture of 2D cylinder array…………………………………………29
Figs. 3-5 AFM images and geometric schemes of imprinted SOG structures: (a) AFM picture of 1D blazed grating structure (b) 1D blazed grating geometric scheme (c) AFM picture of 2D cylinder array structure (d) 2D cylinder array geometric scheme………………………………...31
Figs. 3-6 The electrical and optical performance of LEDs with and without imprinted structures: (a) Output power of LEDs with and without embossed structure, and (b) I-V curves of LEDs with and without embossed structure…………………………………………….…….33
Fig. 3-7 The equipment setup for far-field pattern measurement………………35
Fig. 3-8 Far-field patterns of LEDs with embossed 1D blazed grating, 2D cylinder structure, and without the embossed structure…………......36
Fig. 3-9 The illustration of LED far-field pattern modulation resulted from 1D blazed grating………………………………………………………..37
Figs 4-1 (a) schematic device structure and (b) photograph of GaN-based LEDs with reflective electrode pads and textured GZO transparent contact layer. The inset is a typical SEM image taken from etched GZO surface……………………………………………………………….43
Fig. 4-2 Typical I-V characteristics of the LEDs with the non-alloyed Ag/Cr/Au (LED-I) and Cr/Au (LED-II) electrodes…………………………….44
Figs. 4-3 Light output power versus injection current for the LED-I, LED-II and LED-III. The insets show the schematic light ray traces in a specular (a) and textured (b) surface corresponding to LED-I and LED-II (c)schematic cross-section device structure and light ray tracing of LED-I………………............................................................................46
Fig. 4-4 The output power enhancement versus the pad reflectivity………...…49
Fig. 4-5 The discussion of output power enhancement that come from different surface……………………………………………………………..….51
Fig 4-6 Flow charts of the GaN-based laser lift-off LED process in the experiment: (a) GaN-based LED epi-structure (not to scale); (b) chip isolation by introduced coupled plasma etcher; (c) contact metal deposition by electron beam; (d) an LED chip pasted to the electroplated Cu substrate; (e) removing the sapphire substrate with a KrF excimer laser lift-off; (f) n-GaN contact deposition by E-gun; and (g) optical microscope picture of a thin GaN LED chip…..………….55
Fig. 4-7 N-pad geometric parameters for the A and B series…………………..57
Fig. 4-8 Performance of A series pattern designs in the experiment: (a) injection current versus forward voltage and (b) injection current versus output power…………………………………………………………………60
Fig. 4-9 Emission intensity distributions of A series LED chip surfaces in the experiment………………………………………………...…………..61
Fig. 4-10 Performance of B series pattern designs: (a) injection current versus forward voltage and (b) injection current versus output power………62
Fig. 4-11 Emission intensity distributions of B series LED chip surfaces in the experiment…………………………………………………………….63
Fig. 5-1 The combination of the GMR filter and LED chip……………………72
Fig. 5-2 The structural parameters of the GMR filter…………………………..72
Fig. 5-3 The transmittance spectrum of the GMR filter, the LED-emitting spectral profile, and the filtered LED-emitting spectral profile………75
Fig. 5-4 The transmittance spectrum of the GMR filter with different incident angles………………………………………………………………….77
Fig. 5-5 The color gamut analysis for different fabrication tolerance levels…..79
Fig. 6-1 Relative positions between LED chips………………………………..82
Fig. 6-2 Structure of the traditional CPC……………………………………….84
Fig. 6-3 The energy distribution and collection efficiency of the traditional CPC: (a) Energy distribution of the traditional CPC and (b) Collection efficiency of the traditional CPC……………………………………...85
Fig. 6-4 Structure and ray tracing of New Design I……………………………86
Fig. 6-5 The energy distribution and collection efficiency of the New Design I: (a) Energy distribution for New Design I and (b) Collection efficiency for New Design I………………………...……………………………87
Fig. 6-6 Structure and ray tracing of New Design II…………………………...88
Fig. 6-7 The energy distribution and collection efficiency of the New Design II: (a) Energy distribution for New Design II and (b) Collection efficiency for New Design II……………………………………………………..89
Fig. 6-8 Structure and ray tracing of New Design III…………………………..90
Fig. 6-9 The energy distribution and collection efficiency of the New Design III: (a) Energy distribution for New Design III and (b) Collection efficiency for New Design III…………………………………………………....91
Fig. 6-10 Photograph of New Design I………………………………………...94
Fig. 6-11 Photograph of New Design III……………………………………….94
Figs. 6-12 The flow chart of imprinting process (a) The SOG layer spun onto the surface of LED chip (b) The imprinting process in chamber (c) The LED chip just separated from Si mold (d) The LED chip after removing SOG recover the pad area. (not to scale)……………………..……100
Figs. 6-13 The pictures and dimension scheme of imprinting structure (a) the OM top view of imprinting structure (b) the AFM tilt view of imprinting structure (c) the imprinting structure geometric parameters (not to scale)..………………………………………………………101
Figs. 6-14 The electric performance of imprinting and planar LED (a) The applied voltage versus current curve (b) The injection current versus luminous curve (c) The intensity distributions of planar and imprinting LED.………………………………………………………………...104
Fig. 6-15 The practical application of the imprinting LED chip (a) the side view of designed reflector for street lamp (b) The tilt view of designed reflector for street lamp (c) The far-field pattern of designed street lamp and OSRAM commercial product…………………………………108
Fig. 7-1 The summary of issues of LED output power enhancement and the corresponding methods proposed in this thesis……………………...113
Fig. 7-2 The summary of LED far-field pattern and emission spectral width modulation………………………………………………………...…114






Table list:
Table 4-1 Comparisons between the results in simulation and experiment for B series samples………………………………………………………..66
Table 6-1 Characteristics of adopted LEDs……………………………….……82
Table 6-2 Tolerance analysis……………………….…………………………..92
Table 6-3 The street lamp design specifications…………………………....…105
Table 6-4 Specification comparisons between with designed street lamp and Golden Dragon with ARGUS lens………………………..………..109
1. Y. H. Son, S. C. An, H. S. Kim, Y. Y. Won, and S. K. Han, "Visible Light
Wireless Transmission Based on Optical Access Network Using White
Light-Emitting Diode and Electroabsorption Transceiver," Microw Opt
Techn Let 52 (4), 790-793 (2010).
2. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W.
Walewski, "White Light Wireless Transmission at 200+Mb/s Net Data Rate
by Use of Discrete-Multitone Modulation," Ieee Photonic Tech L 21 (20),
1511-1513 (2009).
3. C. H. Lin, C. C. Wu, P. H. Yang, and T. Y. Kuo, "Application of Taguchi
Method in Light-Emitting Diode Backlight Design for Wide Color Gamut
Displays," J Disp Technol 5 (8), 323-330 (2009).
4. I. Moreno and U. Contreras, "Color distribution from multicolor LED
arrays," Opt Express 15 (6), 3607-3618 (2007).
5. H. Nakamura, "Recent Development of White Leds and Solid State
Lighting," Light Eng 17 (4), 13-17 (2009).
6. X. Long, R. Liao, and J. Zhou, "Development of street lighting system-based
novel high-brightness LED modules," Iet Optoelectron 3 (1), 40-46 (2009).
7. C. J. Yan, X. Liu, H. F. Li, X. X. Xia, H. X. Lu, and W. T. Zheng, "Color
117
three-dimensional display with omnidirectional view based on a
light-emitting diode projector," Appl Optics 48 (22), 4490-4495 (2009).
8. S. H. Tu, J. W. Pan, C. M. Wang, Y. C. Lee, and J. Y. Chang, "New
collection systems for multi LED light engines," Opt Rev 16 (3), 318-322
(2009).
9. J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, "High efficiency
pocket-size projector with a compact projection lens and a light emitting
diode-based light source system," Appl Optics 47 (19), 3406-3414 (2008).
10. J. H. Kim, J. H. Park, J. H. Kim, T. V. Cao, T. Y. Lee, H. J. Ban, K. Yang, H.
G. Kim, P. B. Ha, and Y. H. Kim, "Power management unit chip design for
automobile active-matrix organic light-emitting diode display module," J
Cent South Univ T 16 (4), 621-628 (2009).
11. X. Luo, W. Xiong, T. Cheng, and S. Liu, "Temperature estimation of
high-power light emitting diode street lamp by a multi-chip analytical
solution," Iet Optoelectron 3 (5), 225-232 (2009).
12. http://www.ledengin.com/led_products.htm
13. http://www.nichia.com/specification/jp/led_09/NSPRR10,20,70AWS.pdf
14. http://www.philipslumileds.com/pdfs/PB65.pdf
15. http://www.led-tech.de/en/High-Power-LEDs-Cree/CREE-XR-E-7090-Series
118
/CREE-XR-E-7090-Q5-Emitter-LT-1144_120_77.html
16. http://www.cree.com/products/pdf/XLampXP-G.pdf
17. S. Nakamura, "Current Status of GaN-Based Solid-State Lighting," Mrs Bull
34 (2), 101-107 (2009)..
18. A. C. H. Lee, D. S. Elson, M. A. Neil, S. Kumar, B. W. Ling, F. Bello, and G.
B. Hanna, "Solid-state semiconductors are better alternatives to arc-lamps for
efficient and uniform illumination in minimal access surgery," Surg Endosc
23 (3), 518-526 (2009).
19. A. Ben Sebitosi and P. Pillay, "New technologies for rural lighting in
developing countries: White LEDs," Ieee T Energy Conver 22 (3), 674-679
(2007).
20. N. Narendran, J. D. Bullough, N. Maliyagoda, and A. Bierman, "What is
useful life for white light LEDs?," J Illum Eng Soc 30 (1), 57 (2001).
21. T. M. Chung and S. S. Dai, "A Study of the Spatial Intensity Distribution of
Led for General Lighting," Light Eng 17 (4), 84-91 (2009).
22. A. David, T. Fuji, R. Sharma, K. McGroddy, S. Nakaruma, S. P. DenBarrss,
E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting
diodes with tailored guided modes distribution” Appl. Phys. Lett. 88, 061124
(2006).
119
23. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, "High-Power and
High-Efficiency InGaN-Based Light Emitters," Ieee T Electron Dev 57 (1),
79-87 (2010).
24. T. H. Hsueh, J. K. Sheu, W. C. Lai, Y. T. Wang, H. C. Kuo, and S. C. Wang,
"Improvement of the Efficiency of InGaN-GaN Quantum-Well
Light-Emitting Diodes Grown With a Pulsed-Trimethylindium Flow
Process," Ieee Photonic Tech L 21 (7), 414-416 (2009).
25. K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura,
"Measurement of electron overflow in 450 nm InGaN light-emitting diode
structures," Appl Phys Lett 94 (6), - (2009).
26. A. Uddin, A. C. Wei, and T. G. Andersson, "Study of degradation
mechanism of blue light emitting diodes," Thin Solid Films 483 (1-2),
378-381 (2005).
27. A. Hori, D. Yasunaga, and K. Fujiwara, "Unusual temperature dependence of
electroluminescence intensity in blue InGaN single quantum well diodes,"
Microelectron J 35 (4), 363-366 (2004).
28. F. S. Hwu, J. C. Chen, S. H. Tu, G. J. Sheu, H. I. Chen, and J. K. Sheud, "A
Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip,"
J Electrochem Soc 157 (1), H31-H37 (2010).
120
29. S. Hwang and J. Shim, "A method for current spreading analysis and
electrode pattern design in light-emitting diodes," Ieee T Electron Dev 55 (5),
1123-1128 (2008).
30. S. Hwang and J. Shim, "A method for current spreading analysis and
electrode pattern design in light-emitting diodes," IEEE T Electron Dev 55
(5), 1123-1128 (2008).
31. T. Y. Tsai, Y. J. Liu, C. H. Yen, and W. C. Liu, "On an AlGaInP Multiple
Quantum Well Light Emitting Diode with a Thin Carbon-Doped GaP
Contact Layer Structure," J Electrochem Soc 157 (4), H459-H462 (2010).
32. D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and
P. R. Wang, "Enhanced Performance of Vertical GaN-Based LEDs With
Highly Reflective P-ohmic Contact and Periodic Indium-Zinc-Oxide
Nano-Wells," Ieee Photonic Tech L 22 (5), 338-340 (2010).
33. L. Q. Yang, J. Z. Hu, L. Kim, and M. W. Shin, "Thermal Analysis of
GaN-Based Light Emitting Diodes With Different Chip Sizes," IEEE T
Device Mat Re 8 (3), 571-575 (2008).
34. E. F. Schubert: Light-Emitting Diodes (Cambridge University Press,
Cambridge, 2006) 94~95
35. H. W. Jang, S. Y. Kim, and J. L. Lee, "Mechanism for Ohmic contact
121
formation of oxidized Ni/Au on p-type GaN," J Appl Phys 94 (3), 1748-1752
(2003).
36. S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P.
Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, "Nitride-based
LEDs with an SPS Tunneling contact layer and an ITO transparent contact,"
IEEE Photonic Tech L 16 (4), 1002-1004 (2004).
37. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura,
"Increase in the extraction efficiency of GaN-based light-emitting diodes via
surface roughening," Appl Phys Lett 84 (6)
38. H. W. Huang, C. C. Kao, J. T. Chu, W. D. Liang, H. C. Kuo, S. C. Wang, and
C. C. Yu, "Improvement of InGaN/GaN light emitting diode performance
with a nano-roughened p-GaN surface by excimer laser-irradiation," Mater
Chem Phys 99 (2-3), 414-417 (2006).
39. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C.
Sone, Y. Park, W. J. Choi, and Q. H. Park, "Enhanced light extraction from
GaN-based light-emitting diodes with holographically generated
two-dimensional photonic crystal patterns," Appl Phys Lett 87 (20), (2005).
40. Y. H. Kim, H. Ruh, Y. K. Noh, M. D. Kim, and J. E. Oh, "Microstructural
properties and dislocation evolution on a GaN grown on patterned sapphire
122
substrate: A transmission electron microscopy study," J Appl Phys 107 (6),
(2010).
41. J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, "Comparison of InGaN-Based
LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire
Substrate," IEEE T Electron Dev 57 (1), 157-163 (2010).
42. H. Y. Gao, F. W. Yan, Y. Zhang, J. M. Li, Y. P. Zeng, and G. H. Wang,
"Improvement of the performance of GaN-based LEDs grown on sapphire
substrates patterned by wet and ICP etching," Solid State Electron 52 (6),
962-967 (2008).
43. P. Wang, W. Wei, B. Cao, Z. Y. Gan, and S. Liu, "Simulation of current
spreading for GaN-based light-emitting diodes," Opt Laser Technol. 42 (5),
737-740 (2010).
44. H. Murat, H. De Smet, and D. Cuypers, "Compact LED projector with
tapered light pipes for moderate light output applications," Displays 27 (3),
117-123 (2006).
45. K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, "Optical
analysis of an 80-W light-emitting-diode street lamp," Opt Eng 47 (1),
(2008).
46. M. K. Lee, C. L. Ho, and P. C. Chen, "Light extraction efficiency
123
enhancement of GaN blue LED by liquid-phase-deposited ZnO rods," IEEE
Photonic Tech L 20 (1-4), 252-254 (2008).
47. H. Ju, P. Zhang, J. Q. Liang, S. R. Wang, and Y. H. Wu, "Blazed silicon
gratings fabricated by deflecting crystal orientation (111)silicon wafer," J
Microlith Microfab 4 (1), (2005).
48. S. I. Chang, J. B. Yoon, H. K. Kim, J. J. Kim, B. K. Lee, and D. H. Shin,
"Microlens array diffuser for a light-emitting diode backlight system," Opt
Lett 31 (20), 3016-3018 (2006).
49. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun,
"Enhanced efficiency of GaN-based light-emitting diodes with periodic
textured Ga-doped ZnO transparent contact layer," Appl Phys Lett 90 (26), -
(2007).
50. M. L. Lee, J. K. Sheu, and C. C. Hu, "Nonalloyed Cr/Au-based ohmic
contacts to n-GaN," Appl Phys Lett 91 (18), (2007).
51. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, W. C.
Hung, J. S. Bow, and Y. C. Yu, "Investigation of the mechanism for Ti/Al
ohmic contact on etched n-GaN surfaces," J Vac Sci Technol B 18 (2),
729-732 (2000).
52. Donald A. Neamen, Semiconductor Physics and Devices, ,McGraw Hill,
124
New York, P.328 (2003)
53. J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, and C.
C. Sun, "Electrical-optical analysis of a GaN/sapphire LED chip by
considering the resistivity of the current-spreading layer," Opt Rev 16 (2),
213-215 (2009).
54. T. Shiga, S. Shimizukawa, and S. Mikoshiba, "Power savings and
enhancement of gray-scale capability of LCD TVs with an adaptive dimming
technique," J Soc Inf Display 16 (2), 311-316 (2008).
55. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Normal-incidence
guided-mode resonant grating filters: Design and experimental
demonstration," Opt Lett 23 (9), 700-702 (1998).
56. S. Tibuleac and R. Magnusson, "Narrow-linewidth bandpass filters with
diffractive thin-film layers," Opt Lett 26 (9), 584-586 (2001).
57. A. Avrutskiıˇ, V. P. Duraev, E. T. N. A. M. Prokhorov, A. S. Svakhin, V. A.
Sychugov, and A. V. Tishchenko, „„Optimization of the characteristics of a
dispersive element based on a corrugated wavguide,‟‟ Sov. J. Quantum
Electron. 18, 362–365 (1988)
58. S. S. Wang and R. Magnusson, "Theory and Applications of Guided-Mode
Resonance Filters," Appl Optics 32 (14), 2606-2613 (1993).
125
59. J. Saarinen, E. Noponen, and J. Turunen, "Guided-Mode Resonance Filters
of Finite Aperture," Opt Eng 34 (9), 2560-2566 (1995).
60. Y. Ding and R. Magnusson, "Use of nondegenerate resonant leaky modes to
fashion diverse optical spectra," Opt Express 12 (9), 1885-1891 (2004).
61. C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee and J. Y. Chang, “Flattened
Broad-Band Notch Filters Using Guided-Mode Resonance Associated with
Asymmetric Binary Gratings”, IEEE Photon. Tech. Lett., 18, 2572-2574
(2006)
62. S. M. Norton, T. Erdogan, and G. M. Morris, "Coupled-mode theory of
resonant-grating filters," J Opt Soc Am A 14 (3), 629-639 (1997).
63. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, "Effects
of modulation strength in guided-mode resonant subwavelength gratings at
normal incidence," J Opt Soc Am A 17 (7), 1221-1230 (2000).
64. L. Wang, S. S. Zhang, Q. P. Wang, J. Q. Chen, W. Jiang, and R. T. Chen,
"Fabrication of three-dimensional (3D) woodpile structure photonic crystal
with layer by layer e-beam lithography," Appl Phys a-Mater 95 (2), 329-334
(2009).
65. R. Sidharthan, F. Chollet, and V. M. Murukeshan, "Periodic patterning using
multi-facet prism based laser interference lithography," Laser Phys 19 (3),
126
505-510 (2009).
66. L. Guan, K. W. Peng, Y. L. Yang, X. H. Qiu, and C. Wang, "The
nanofabrication of polydimethylsiloxane using a focused ion beam,"
Nanotechnology 20 (14), (2009).
67. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and
trenches in polymers,” Appl. Phys. Lett. 67, 3114 (1995)
68. Breault Research Organization: http://www.breault.com
69. OSTAR Projection at Osram Opto semiconductors:
http://catalog.osram-os.com
70. ASAP technical
guide:http://www.breault.com/k-base.php?kbaseID=29&catID=44&page=1//
www.breault.com
71. R. E. Fisher, and B. Tadic-Galeb, Optical System Design, McGraw Hill, New
York (2000)
72. E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart,"
Science 308 (5726), 1274-1278 (2005).
73. M. S. Zukauskas, M. S. Schur, R. Gaska, Introduction to Solid State Lighting
(Wiley-Interscience 2002)
127
74. K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa, and D.
Ueda, "High-extraction-efficiency blue light-emitting diode using
extended-pitch photonic crystal," Jpn J Appl Phys 1 43 (8B), 5809-5813
(2004).
75. M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Ni-tride
deep-ultraviolet light-emitting diodes with microlens array,” Appl. Phys. Lett.
86 173504 (2005)
76. Z. M. Wang, X. J. Luo, S. Wang, C. X. Luo, M. H. Sun, K. Bao, B. Zhang, G.
Y. Zhang, Y. G. Wang, Y. Chen, H. Ji, and Q. Ouyang, "Light output
enhancement of a GaN-based light emitting diode by polymer film
imprinting," Semicond Sci Tech 22 (3), 279-282 (2007).
77. K. Bao, X. N. Kang, B. Zhang, T. Dai, C. Xiong, H. Ji, G. Y. Zhang, and Y.
Chen, "Improvement of light extraction from patterned polymer encapsulated
GaN-based flip-chip light-emitting diodes by imprinting," Ieee Photonic Tech
L 19 (21-24), 1840-1842 (2007).
78. M. P. Krijin, B. A, Salters and O. H. Willemsen, “LED-based mini-projectors”
Proc. SPIE 6196 619602 (2006)
79. Osram Opto-Semiconductor GmbH. “Street light with LED light source”
Website:
128
http://catalog.osram-os.com/catalogue/catalogue.do?favOid=0000000300012
fdd018a00b7&act=showBookmark
80. E. F. Schubert, Light-Emitting Diodes, pp. 94-95 (Cambridge University
Press, Cambridge, 2006)
81. Osram Opto-Semiconductor GmbH. Website: http://www.orsram-os.com
(Golden Dragon with ARGUS lens)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top