|
1. Y. H. Son, S. C. An, H. S. Kim, Y. Y. Won, and S. K. Han, "Visible Light Wireless Transmission Based on Optical Access Network Using White Light-Emitting Diode and Electroabsorption Transceiver," Microw Opt Techn Let 52 (4), 790-793 (2010). 2. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, "White Light Wireless Transmission at 200+Mb/s Net Data Rate by Use of Discrete-Multitone Modulation," Ieee Photonic Tech L 21 (20), 1511-1513 (2009). 3. C. H. Lin, C. C. Wu, P. H. Yang, and T. Y. Kuo, "Application of Taguchi Method in Light-Emitting Diode Backlight Design for Wide Color Gamut Displays," J Disp Technol 5 (8), 323-330 (2009). 4. I. Moreno and U. Contreras, "Color distribution from multicolor LED arrays," Opt Express 15 (6), 3607-3618 (2007). 5. H. Nakamura, "Recent Development of White Leds and Solid State Lighting," Light Eng 17 (4), 13-17 (2009). 6. X. Long, R. Liao, and J. Zhou, "Development of street lighting system-based novel high-brightness LED modules," Iet Optoelectron 3 (1), 40-46 (2009). 7. C. J. Yan, X. Liu, H. F. Li, X. X. Xia, H. X. Lu, and W. T. Zheng, "Color 117 three-dimensional display with omnidirectional view based on a light-emitting diode projector," Appl Optics 48 (22), 4490-4495 (2009). 8. S. H. Tu, J. W. Pan, C. M. Wang, Y. C. Lee, and J. Y. Chang, "New collection systems for multi LED light engines," Opt Rev 16 (3), 318-322 (2009). 9. J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, "High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system," Appl Optics 47 (19), 3406-3414 (2008). 10. J. H. Kim, J. H. Park, J. H. Kim, T. V. Cao, T. Y. Lee, H. J. Ban, K. Yang, H. G. Kim, P. B. Ha, and Y. H. Kim, "Power management unit chip design for automobile active-matrix organic light-emitting diode display module," J Cent South Univ T 16 (4), 621-628 (2009). 11. X. Luo, W. Xiong, T. Cheng, and S. Liu, "Temperature estimation of high-power light emitting diode street lamp by a multi-chip analytical solution," Iet Optoelectron 3 (5), 225-232 (2009). 12. http://www.ledengin.com/led_products.htm 13. http://www.nichia.com/specification/jp/led_09/NSPRR10,20,70AWS.pdf 14. http://www.philipslumileds.com/pdfs/PB65.pdf 15. http://www.led-tech.de/en/High-Power-LEDs-Cree/CREE-XR-E-7090-Series 118 /CREE-XR-E-7090-Q5-Emitter-LT-1144_120_77.html 16. http://www.cree.com/products/pdf/XLampXP-G.pdf 17. S. Nakamura, "Current Status of GaN-Based Solid-State Lighting," Mrs Bull 34 (2), 101-107 (2009).. 18. A. C. H. Lee, D. S. Elson, M. A. Neil, S. Kumar, B. W. Ling, F. Bello, and G. B. Hanna, "Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery," Surg Endosc 23 (3), 518-526 (2009). 19. A. Ben Sebitosi and P. Pillay, "New technologies for rural lighting in developing countries: White LEDs," Ieee T Energy Conver 22 (3), 674-679 (2007). 20. N. Narendran, J. D. Bullough, N. Maliyagoda, and A. Bierman, "What is useful life for white light LEDs?," J Illum Eng Soc 30 (1), 57 (2001). 21. T. M. Chung and S. S. Dai, "A Study of the Spatial Intensity Distribution of Led for General Lighting," Light Eng 17 (4), 84-91 (2009). 22. A. David, T. Fuji, R. Sharma, K. McGroddy, S. Nakaruma, S. P. DenBarrss, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution” Appl. Phys. Lett. 88, 061124 (2006). 119 23. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, "High-Power and High-Efficiency InGaN-Based Light Emitters," Ieee T Electron Dev 57 (1), 79-87 (2010). 24. T. H. Hsueh, J. K. Sheu, W. C. Lai, Y. T. Wang, H. C. Kuo, and S. C. Wang, "Improvement of the Efficiency of InGaN-GaN Quantum-Well Light-Emitting Diodes Grown With a Pulsed-Trimethylindium Flow Process," Ieee Photonic Tech L 21 (7), 414-416 (2009). 25. K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, "Measurement of electron overflow in 450 nm InGaN light-emitting diode structures," Appl Phys Lett 94 (6), - (2009). 26. A. Uddin, A. C. Wei, and T. G. Andersson, "Study of degradation mechanism of blue light emitting diodes," Thin Solid Films 483 (1-2), 378-381 (2005). 27. A. Hori, D. Yasunaga, and K. Fujiwara, "Unusual temperature dependence of electroluminescence intensity in blue InGaN single quantum well diodes," Microelectron J 35 (4), 363-366 (2004). 28. F. S. Hwu, J. C. Chen, S. H. Tu, G. J. Sheu, H. I. Chen, and J. K. Sheud, "A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip," J Electrochem Soc 157 (1), H31-H37 (2010). 120 29. S. Hwang and J. Shim, "A method for current spreading analysis and electrode pattern design in light-emitting diodes," Ieee T Electron Dev 55 (5), 1123-1128 (2008). 30. S. Hwang and J. Shim, "A method for current spreading analysis and electrode pattern design in light-emitting diodes," IEEE T Electron Dev 55 (5), 1123-1128 (2008). 31. T. Y. Tsai, Y. J. Liu, C. H. Yen, and W. C. Liu, "On an AlGaInP Multiple Quantum Well Light Emitting Diode with a Thin Carbon-Doped GaP Contact Layer Structure," J Electrochem Soc 157 (4), H459-H462 (2010). 32. D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and P. R. Wang, "Enhanced Performance of Vertical GaN-Based LEDs With Highly Reflective P-ohmic Contact and Periodic Indium-Zinc-Oxide Nano-Wells," Ieee Photonic Tech L 22 (5), 338-340 (2010). 33. L. Q. Yang, J. Z. Hu, L. Kim, and M. W. Shin, "Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip Sizes," IEEE T Device Mat Re 8 (3), 571-575 (2008). 34. E. F. Schubert: Light-Emitting Diodes (Cambridge University Press, Cambridge, 2006) 94~95 35. H. W. Jang, S. Y. Kim, and J. L. Lee, "Mechanism for Ohmic contact 121 formation of oxidized Ni/Au on p-type GaN," J Appl Phys 94 (3), 1748-1752 (2003). 36. S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, "Nitride-based LEDs with an SPS Tunneling contact layer and an ITO transparent contact," IEEE Photonic Tech L 16 (4), 1002-1004 (2004). 37. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Appl Phys Lett 84 (6) 38. H. W. Huang, C. C. Kao, J. T. Chu, W. D. Liang, H. C. Kuo, S. C. Wang, and C. C. Yu, "Improvement of InGaN/GaN light emitting diode performance with a nano-roughened p-GaN surface by excimer laser-irradiation," Mater Chem Phys 99 (2-3), 414-417 (2006). 39. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns," Appl Phys Lett 87 (20), (2005). 40. Y. H. Kim, H. Ruh, Y. K. Noh, M. D. Kim, and J. E. Oh, "Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire 122 substrate: A transmission electron microscopy study," J Appl Phys 107 (6), (2010). 41. J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, "Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate," IEEE T Electron Dev 57 (1), 157-163 (2010). 42. H. Y. Gao, F. W. Yan, Y. Zhang, J. M. Li, Y. P. Zeng, and G. H. Wang, "Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching," Solid State Electron 52 (6), 962-967 (2008). 43. P. Wang, W. Wei, B. Cao, Z. Y. Gan, and S. Liu, "Simulation of current spreading for GaN-based light-emitting diodes," Opt Laser Technol. 42 (5), 737-740 (2010). 44. H. Murat, H. De Smet, and D. Cuypers, "Compact LED projector with tapered light pipes for moderate light output applications," Displays 27 (3), 117-123 (2006). 45. K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, "Optical analysis of an 80-W light-emitting-diode street lamp," Opt Eng 47 (1), (2008). 46. M. K. Lee, C. L. Ho, and P. C. Chen, "Light extraction efficiency 123 enhancement of GaN blue LED by liquid-phase-deposited ZnO rods," IEEE Photonic Tech L 20 (1-4), 252-254 (2008). 47. H. Ju, P. Zhang, J. Q. Liang, S. R. Wang, and Y. H. Wu, "Blazed silicon gratings fabricated by deflecting crystal orientation (111)silicon wafer," J Microlith Microfab 4 (1), (2005). 48. S. I. Chang, J. B. Yoon, H. K. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, "Microlens array diffuser for a light-emitting diode backlight system," Opt Lett 31 (20), 3016-3018 (2006). 49. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, "Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer," Appl Phys Lett 90 (26), - (2007). 50. M. L. Lee, J. K. Sheu, and C. C. Hu, "Nonalloyed Cr/Au-based ohmic contacts to n-GaN," Appl Phys Lett 91 (18), (2007). 51. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, W. C. Hung, J. S. Bow, and Y. C. Yu, "Investigation of the mechanism for Ti/Al ohmic contact on etched n-GaN surfaces," J Vac Sci Technol B 18 (2), 729-732 (2000). 52. Donald A. Neamen, Semiconductor Physics and Devices, ,McGraw Hill, 124 New York, P.328 (2003) 53. J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, and C. C. Sun, "Electrical-optical analysis of a GaN/sapphire LED chip by considering the resistivity of the current-spreading layer," Opt Rev 16 (2), 213-215 (2009). 54. T. Shiga, S. Shimizukawa, and S. Mikoshiba, "Power savings and enhancement of gray-scale capability of LCD TVs with an adaptive dimming technique," J Soc Inf Display 16 (2), 311-316 (2008). 55. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Normal-incidence guided-mode resonant grating filters: Design and experimental demonstration," Opt Lett 23 (9), 700-702 (1998). 56. S. Tibuleac and R. Magnusson, "Narrow-linewidth bandpass filters with diffractive thin-film layers," Opt Lett 26 (9), 584-586 (2001). 57. A. Avrutskiıˇ, V. P. Duraev, E. T. N. A. M. Prokhorov, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, „„Optimization of the characteristics of a dispersive element based on a corrugated wavguide,‟‟ Sov. J. Quantum Electron. 18, 362–365 (1988) 58. S. S. Wang and R. Magnusson, "Theory and Applications of Guided-Mode Resonance Filters," Appl Optics 32 (14), 2606-2613 (1993). 125 59. J. Saarinen, E. Noponen, and J. Turunen, "Guided-Mode Resonance Filters of Finite Aperture," Opt Eng 34 (9), 2560-2566 (1995). 60. Y. Ding and R. Magnusson, "Use of nondegenerate resonant leaky modes to fashion diverse optical spectra," Opt Express 12 (9), 1885-1891 (2004). 61. C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee and J. Y. Chang, “Flattened Broad-Band Notch Filters Using Guided-Mode Resonance Associated with Asymmetric Binary Gratings”, IEEE Photon. Tech. Lett., 18, 2572-2574 (2006) 62. S. M. Norton, T. Erdogan, and G. M. Morris, "Coupled-mode theory of resonant-grating filters," J Opt Soc Am A 14 (3), 629-639 (1997). 63. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, "Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence," J Opt Soc Am A 17 (7), 1221-1230 (2000). 64. L. Wang, S. S. Zhang, Q. P. Wang, J. Q. Chen, W. Jiang, and R. T. Chen, "Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography," Appl Phys a-Mater 95 (2), 329-334 (2009). 65. R. Sidharthan, F. Chollet, and V. M. Murukeshan, "Periodic patterning using multi-facet prism based laser interference lithography," Laser Phys 19 (3), 126 505-510 (2009). 66. L. Guan, K. W. Peng, Y. L. Yang, X. H. Qiu, and C. Wang, "The nanofabrication of polydimethylsiloxane using a focused ion beam," Nanotechnology 20 (14), (2009). 67. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114 (1995) 68. Breault Research Organization: http://www.breault.com 69. OSTAR Projection at Osram Opto semiconductors: http://catalog.osram-os.com 70. ASAP technical guide:http://www.breault.com/k-base.php?kbaseID=29&catID=44&page=1// www.breault.com 71. R. E. Fisher, and B. Tadic-Galeb, Optical System Design, McGraw Hill, New York (2000) 72. E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308 (5726), 1274-1278 (2005). 73. M. S. Zukauskas, M. S. Schur, R. Gaska, Introduction to Solid State Lighting (Wiley-Interscience 2002) 127 74. K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa, and D. Ueda, "High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal," Jpn J Appl Phys 1 43 (8B), 5809-5813 (2004). 75. M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Ni-tride deep-ultraviolet light-emitting diodes with microlens array,” Appl. Phys. Lett. 86 173504 (2005) 76. Z. M. Wang, X. J. Luo, S. Wang, C. X. Luo, M. H. Sun, K. Bao, B. Zhang, G. Y. Zhang, Y. G. Wang, Y. Chen, H. Ji, and Q. Ouyang, "Light output enhancement of a GaN-based light emitting diode by polymer film imprinting," Semicond Sci Tech 22 (3), 279-282 (2007). 77. K. Bao, X. N. Kang, B. Zhang, T. Dai, C. Xiong, H. Ji, G. Y. Zhang, and Y. Chen, "Improvement of light extraction from patterned polymer encapsulated GaN-based flip-chip light-emitting diodes by imprinting," Ieee Photonic Tech L 19 (21-24), 1840-1842 (2007). 78. M. P. Krijin, B. A, Salters and O. H. Willemsen, “LED-based mini-projectors” Proc. SPIE 6196 619602 (2006) 79. Osram Opto-Semiconductor GmbH. “Street light with LED light source” Website: 128 http://catalog.osram-os.com/catalogue/catalogue.do?favOid=0000000300012 fdd018a00b7&act=showBookmark 80. E. F. Schubert, Light-Emitting Diodes, pp. 94-95 (Cambridge University Press, Cambridge, 2006) 81. Osram Opto-Semiconductor GmbH. Website: http://www.orsram-os.com (Golden Dragon with ARGUS lens)
|