跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭為元
研究生(外文):Wei-yuan Hsiao
論文名稱:抗反射膜在顯示技術與太陽能吸收之研究
論文名稱(外文):Antireflection coating on metallic substrates for solarenergy and display applications
指導教授:李正中李正中引用關係
指導教授(外文):Cheng-chung Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:66
中文關鍵詞:太陽能吸收有機發光二極體抗反射膜金屬基板
外文關鍵詞:metallic substrateSolar energy absorptionAntireflection coatingOLED
相關次數:
  • 被引用被引用:4
  • 點閱點閱:651
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬膜在太陽能與顯示器上應用相當廣泛。為了增加吸收效率或對比度,勢必要將抗反射膜應用在金屬基板上。然而一般玻璃或塑膠等介電質基板與金屬等不透光基板之抗反射膜的設計有非常大的差異,又因為金屬膜的光學常數會隨著厚度與微結構的改變而有所不同。本實驗利用SiO2 和Nb2O5作為介電質材料,鈮Nb作為金屬膜材料來設計抗反射膜。
研究使用金屬-介電質結構做兩種設計設計: air/SiO2 /Nb/ SiO2/Al, air/SiO2/Nb2O5/Nb/Nb2O5/Al。可見光波段400~700 nm的平均反射率小於0.4%。使用高折射率材料的設計之總厚度140 nm比單純使用SiO2的低折射率設計少了20%,且兩種設計之厚度都遠小於使用塗料塗佈吸收層的厚度。
太陽能吸收的應用設計波段選擇太陽光譜強度範圍400~1800 nm,平均反射率約1%,吸收率約99%。在紅外光8000 nm以上也有85%以上之反射率,降低了熱輻射放射量。
此外,軟性顯示器OLED也與此種抗反射膜結合在PI基板上,處理過的元件在可見光400~700 nm照度反射率RD=3.4%,未處理過的元件之RD=79.8%,成功降低了16倍以上,在對比度有顯著的提升。
Normally metallic films are required for solar energy and display related coatings. To increase the absorbing efficiency or contrast, it is necessary to apply an antireflection coating (ARC) on the metal substrate. However, the design of a metal substrate is very different from the design of a dielectric substrate, since the optical constant of metallic thin film is very dependent on its thickness and microstructure. In this study, we design and fabricate ARCs on Al substrates using SiO2 and Nb2O5 as the dielectric materials and Nb for the metal films.
It had the following metal-dielectric structure: air/SiO2 /Nb/ SiO2/Al , air/SiO2/Nb2O5/Nb/Nb2O5/Al. A total thickness is less than 20% than only using a low refractive index material for the dielectric layer, the average reflection is below 0.4% from 400-700nm, which is much thinner than the typical printed absorber. In this study, we obtain an average reflection for the solar absorber of less than 1% and a total absorbance of about 99% from 400-1800 nm. In addition, we also successfully fabricated an OLED device on PI substrate composed of the ARC film and a highly reflective cavity. The total luminance reflectance RD of the measured device is less than 5%. The RD of the untreated device is about 80%, 16 times higher than treated device.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.3 論文架構 5
第二章 6
2.1 單介面的反射與透射[11] 6
2.2 導納軌跡法 8
2.2.1 單層膜的等效導納 8
2.2.2 金屬膜的導納軌跡 10
第三章 實驗設備及方法 13
3.1 實驗流程與步驟 13
3.2 實驗原理-磁控濺鍍原理 14
3.3 實驗設備 15
3.4 量測與分析儀器 16
3.4.1 可見光-近紅外光光譜儀[12] 16
3.4.2 光學常數fitting程式 17
3.4.3 橢圓偏振儀 18
第四章 實驗結果與討論 22
4.1 單層膜的製鍍與光學常數分析 22
4.1.1 二氧化矽薄膜分析 22
4.1.2 氧化鈮薄膜分析 25
4.1.3 鈮薄膜分析 27
4.2 抗反射膜的設計 32
4.2.1 SiO2設計的抗反射膜 33
4.2.2 Nb2O5設計的抗反射膜 37
4.3 光學導納分析金屬膜在抗反射膜中的影響 40
4.4 使用金屬-介電質結構設計太陽能吸收膜 43
4.5 金屬-介電質抗反射膜應用在OLED軟性基板元件 46
第五章 結論 50
Conclusion 52
Reference 53
[1]Giovannini, H., Amra, C., ''Dielectric thin films for maximized absorption with standard quality black surfaces''. Applied Optics, 1998. 37(1): p. 103-105.
[2]J. Angele, P.D., D. Laroche, P. Payen, in Proceedings of the International Conference on Space Optics, 1997. ICSO’97 ~Centre National d’Etudes Spatiales, Toulouse, France,.
[3]Mestreau, A., et al., in Proceedings of the International Conference on Space Optics, 1997. ICSO’97 ~Centre National d’Etudes Spatiales,Toulouse, France.
[4]Wong, F.L., Fung, M. K., Jiang, X., Lee, C. S., Lee, S. T., ''Non-reflective black cathode in organic light-emitting diode''. Thin Solid Films, 2004. 446(1): p. 143-146.
[5]X. D. Feng, R.K., Z. H. Lu, ''Metal–organic–metal cathode for high-contrast organic light-emitting diodes''. APPLIED PHYSICS LETTERS, 2004. 85(3).
[6]Poitras, D., C.-C. Kuo, and C. Py, ''Design of high-contrast OLEDs with microcavity effect''. OPTICS EXPRESS, 2008. 16(11).
[7]Daniel Poitras, J.A.D., Tom Cassidy, Clive Midwinter, C. Thomas McElroy, ''Black layer coatings for the photolithographic manufacture of diffraction gratings''. APPLIED OPTICS, 2002. 41(16).
[8]Dobrowolski, J.A., Sullivan, B. T., Bajcar, R. C., ''Optical Interference, Contrast-Enhanced Electroluminescent Device''. Applied Optics, 1992. 31(28): p. 5988-5996.
[9]Steigerwald, ''Antiflector black matrix having successively a chromium oxide layer, a molybdenum layer and a second chromium oxide layer''. United States Patent, 1996(No. 5,566,011).
[10]Raniero, L., et al., ''Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell''. Solar Energy Materials and Solar Cells, 2005. 87(1-4): p. 349-355.
[11]李正中, ''薄膜光學與鍍膜技術 第五版''. 藝軒圖書出版社, 2006.
[12]王宣文, ''以電漿表面預處理法在塑膠基板上製鍍抗反射膜''. 中央大學,碩士論文, 民國94年.
[13]R. M. A. Azzam, N.M.B., ''Analysis and Improvement of Reflection-type Transverse Modulation Optical Voltage Sensors''. North-Holland Publish Company, 1977.
[14]Fujiwara, H., ''Spectroscopic Ellipsometry Principles and Applications''. John Wiley & Sons, Ltd, 2007.
[15]李佳真, ''直流磁控濺鍍氧化膜界面應力之研究''. 國立中央大學, 碩士論文, 民國98年.
[16]Ordal, M.A., et al., ''Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.''. APPLIED OPTICS, 1985. 24(24).
[17]Yamamoto, M. and T. Namioka, ''In situ ellipsometric study of optical properties of ultrathin films''. APPLIED OPTICS, 1992. 31(10).
[18]Hien V. Nguyen, I.A., R. W. Collins, ''Evolution of the optical functions of thin-film aluminum: A real-time spectroscopic ellipsometry study''. PHYSICAL REVIEW B, 1993. 47(7).
[19]Li, H.Y., et al., ''Analysis of the Drude model in metallic films''. Applied Optics, 2001. 40(34): p. 6307-6311.
[20]Charton, C., Fahland, M., ''Optical properties of thin Ag films deposited by magnetron sputtering''. Surface & Coatings Technology, 2003. 174: p. 181-186.
[21]Wook-Jae Lee, J.-E.K., Hae Yong Park, Suntak Park, Min-su Kim, Jin Tae Kim, Jung Jin Ju, ''Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths''. JOURNAL OF APPLIED PHYSICS, 2008. 103(073713).
[22] A.A. Schmidt, H.E., K. Herwig, R. Anton, Surf. Sci., 1996. 349(301).
[23]蘇維彬, 張嘉升, and 鄭天佐, ''二維鉛量子島的成長機制與過程''. 物理雙月刊, 2003. 廿五卷五期.
[24]P. Andreazza, C.A.-V., J.P. Rozenbaum, A.-L. Thomann, P. Brault, ''Nucleation and initial growth of platinum islands by plasma sputter deposition''. Surface and Coatings Technology, 2002. 151–152: p. 122–127.
[25]SENNETT, R.S. and G.D. SCOTT, ''The Structure of Evaporated Metal Films and Their Optical Properties''. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1950. 40(4).
[26] MIKHAILOVS, I.F., et al., Cryst. Reg. Technol., 1994. 29(5).
[27] Palik, E.D., ''Handbook of Optical Constants of Solids''. Academic Press.
[28] C. Himcinschi, N.M., S. Hartmann, M. Gersdorff, M. Friedrich, H.-H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, D.r.t. Zahn, ''Optical properties of multilayered Alq3/a-NPD structures investigated with spectroscopic ellipsometry''. Appl. Phys. A, 2005. 80: p. 551–555.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top