跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昭穎
研究生(外文):Jhao-Ying Lin
論文名稱:巴金森氏症雷射線三角量測系統
論文名稱(外文):Testing Parkinson''s disease by Using Laser Line Triangulation Measurement System
指導教授:張榮森張榮森引用關係
指導教授(外文):Rong-Seng Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:112
中文關鍵詞:質心法CMOS 影像感測器快速傅立葉轉換巴金森氏症雷射三角量測法
外文關鍵詞:Parkinson&apos&aposs disease (PD)TremorDorsum manusLaser line triangulation measurement methodCentroid methodCMOS image sensorFast Fourier Transform (FFT)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出了一種非侵入性,非接觸式檢測巴金森氏症患者手背振動波形系統,主要運用雷射光線性陣列法檢測皮膚表面的振動。所提出的巴金森氏症測量系統主要由雷射光二極體線性陣列和一個低成本互補金屬氧化物半導體(CMOS)影像感測器所構成。本研究是利用雷射光線性陣列和質心法透過快速傅立葉變換(FFT)。藉由使用我們所提出的巴金森病的量測系統就能快速檢測出手背振動波形的形狀和頻率。巴金森氏症手背附近波形線性之相對變化是被當測詴點。我們廣泛的進行了一系列實驗,評估所設計的巴金森氏症檢測系統的性能。
實驗設計分成兩大群組為控制組的正常人和巴金森氏患者並皆更六位,從實驗結果顯示,巴金森氏症患者手背(dorsum manus)在靜止時,更2位病人的左手更靜止性顫抖頻率為4.1到4.3赫茲之間,帄均4.2赫茲。另外4位右手更靜止性顫抖頻率為4.3到4.7赫茲之間,帄均4.5赫茲。六位病人手部在姿勢活動性時,顫抖頻率為0.29到1.52赫茲之間,帄均0.905赫茲。 控制組正常人的手靜止性顫抖頻率為0.09到0.53赫茲之間,帄均0.31赫茲。而手姿勢活動性顫抖頻率為0.71到0.82赫茲之間,帄均0.77赫茲。根據六位病人手背在靜止量測呈現的振動的頻率依續為4.5赫茲(病程5年)、4.3赫茲(病程2年)、4.1赫茲(病程3年)、4.7赫茲(病程7年)、4.5赫茲(病程2年)和4.3赫茲(病程7年),如果排除第六位病人樣本,手背抖動頻率跟病程長短成正比,病程越長手背抖動頻率越高。另一方面控制組正常人手在靜止性和姿勢活動性顫抖頻率之帄均差異為0.46赫茲,然而巴金森氏症患手背靜止性和姿勢活動性顫抖頻率之帄均差異(△f = f resting - f postural action) 為3.495赫茲,控制組正常人在兩情況下差異量不大,而巴金森氏症患者在兩情況下差異量很大,初步數據跟控制組正常人互相比較,已經見其差異性(八倍),此法也可以藉機消除受測者心理因素和環境因素的干擾。而本文所提出的檢測系統精密度高(解析度10μm)能測量出手背微振動。本研究所提出巴金森氏症檢測系統,採用的CMOS 影像感測器設計是屬於非接觸式,便於攜帶,易於使用,成本低,是可行的系統。此外,所設計的巴金森氏症檢測系統在中醫臨床實踐非常適合用於評估和預先診斷一個人的健康。
This paper presents a non-invasive, non-contact system to measure Parkinson''s disease patient dorsum manus vibration waveforms of artery via applying laser line method to detect dorsum manus vibration. The proposed Parkinson''s disease measurement system chiefly consists of a laser diode and a low cost complementary metal-oxide semiconductor (CMOS) image sensor. Laser line and centroid method are combined with the Fast Fourier Transform (FFT) in this study. The shape and frequency of the dorsum manus vibration waveforms can be detected rapidly by using our Parkinson''s disease measurement system. The relative variation of the Parkinson''s disease patient dorsum manus vibration waveforms at laser line near wrist joint is used as testing points. An extensive series of experiments was conducted to evaluate the performance of the designed Parkinson''s disease measurement system.
Experimental design is divided into two groups for that control group normal human and Parkinson''s patients. From the experimental results show that Parkinson''s disease patients dorsum manus at rest, two patients left dorsum manus existence 4.1-4.3 Hertz of resting tremor frequency and the average frequency is 4.2 hertz. In addition the four patients with right dorsum manus 4.3-4.7 hertz of resting tremor frequency and the average frequency is 4.5 Hertz. Six patients dorsum manus postural action tremor frequency range from 0.29 to 1.52 hertz, and the average frequency is 0.905 Hertz. The control group normal human dorsum manus resting tremor frequency range from 0.09 to 0.53 hertz and the average frequency is 0.31 hertz, and postural action tremor frequency range from 0.71 to 0.82 hertz and the average frequency is 0.77 hertz. According to the results, six patients dorsum manus resting tremor frequency in descending order, 4.5 Hz (course of 5 years), 4.3 Hz (duration 2 years of disease), 4.1 Hz (duration 3 years of disease), 4.7 Hz (duration 7 years of disease), 4.5 Hz (duration 2 years of disease) and 4.3 Hz (duration 7 years of disease). If we rule out the sixth patient samples, dorsum manus tremor frequency is proportional to the duration of disease. On the other hand, we are laser line can detect two different situations simultaneously, for example the frequencies of postural action tremor left hand and the resting right hand by one laser line across both hand and get two frequencies dorsum manus simultaneously. By calculated their difference △f = f resting - f postural action. We get the preliminary data. △f = 3.495 Hertz which is almost ten times than the control group (△f = 0.46). This method can get rid of the environment and the psychological influence to the hand’s vibration. In our method, we can measure the micro vibration of human hand as high as 10μm resolution. This research demonstrates that applying a CMOS image sensor in designing a non-contact, portable, easy-to-use, low cost Parkinson''s disease measurement system is feasible. Also, the designed Parkinson''s disease measurement system is well suited for evaluating and pre-diagnosing the health of a human being.
摘要………………………………………………………………………… i Abstract……………………………………………………………………iii 誌謝………………………………………………………………………… v 目錄…………………………………………………………………………vi 圖目錄……………………………………………………………………… x 表目錄 …………………………………………………………………… xv
第一章 緒論 ............................................................................................ 1
1.1 研究動機與目的.......................................................................... 1
1.2 論文貢獻 ..................................................................................... 4
1.3 論文架構 ..................................................................................... 5
第二章 巴金森氏症論述.......................................................................... 7
2.1 簡介 ............................................................................................ 7
2.2 文獻回顧 ................................................................................... 11
2.3 症狀探討 ................................................................................... 15
第三章 研究方法 ................................................................................... 18
雷射測距方法 ........................................................................... 19
3.2.1 雷射三角量測原理 ................................................................. 22
3.2.2 雷射線三角量測原理 ............................................................. 24
3.2.3 雷射矩陣三角量測原理 ......................................................... 26
3.2.4 系統光源................................................................................ 27
3.2.5 影像感測元件 ........................................................................ 33
3.3 影像處理 ................................................................................... 36
3.3.1 影像感測器擷取與色彩空間轉換 .......................................... 38
3.3.2 數位影像敍述 ........................................................................ 39
3.3.3 次像素原理 ............................................................................ 40
3.3.4 影像二值化 ............................................................................ 41
3.3.5 光學質心法 ............................................................................ 42
3.4 系統校正 ................................................................................... 45
3.4.1 影像範圍校正 ........................................................................ 45
3.4.2 高度位移校正 ........................................................................ 45
3.4.3 頻率校正................................................................................ 49
第四章 實驗結果與分析討論 ................................................................ 55
4.1 實驗帄台建立 ........................................................................... 55
4.2 實驗環境 ................................................................................... 56
4.3 實驗設計 ................................................................................... 57
4.3.1 受測族群................................................................................ 57
4.3.2 實驗量測項目 ........................................................................ 61
4.4 實驗結果 ................................................................................... 64
4.4.1 控制組正常人實驗一 ............................................................. 64
4.4.2 控制組正常人實驗二 ............................................................. 65
4.4.3 控制組正常人實驗三 ............................................................. 67
4.4.4 控制組正常人實驗四 ............................................................. 68
4.4.5 控制組正常人實驗五 ............................................................. 70
4.4.6 控制組正常人實驗六 ............................................................. 71
4.4.7 巴金森氏症病人實驗一 ......................................................... 73
4.4.8 巴金森氏症病人實驗二 ......................................................... 74
4.4.9 巴金森氏症病人實驗三 ......................................................... 76
4.4.10 巴金森氏症病人實驗四 ......................................................... 77
ix
4.4.11 巴金森氏症病人實驗五 ......................................................... 79
4.4.12 巴金森氏症病人實驗六 ......................................................... 80
4.5 結果討論 ................................................................................... 82
第五章 結論與未來展望........................................................................ 85
5.1 結論 .......................................................................................... 85
5.2 未來展望 ................................................................................... 89
參考文獻................................................................................................ 91
[1] http://www.sti.nasa.gov/tto/spinoff1999/ch2.htm.
[2] S. Rik, Yajur and Atharva., The four Vedas.
[3] 林增耀, 尺寸量測儀器的校正與其修正要點.
[4] 劉興漢, 雙光束雷射掃瞄光電系統之建立.
[5] 彭政忠, 精巧型數位影像之距離及角度量測系統, 2002.
[6] T. A, "Observations de quelques fonctions involontaires des appareils de la locomotion et de la prehension," Mem de l’Akad de Méd, vol. 2, pp. 368-398, 1833.
[7] H. M, "Lectures on the nervous system and its diseases," London: Sherwood, vol. 141, 1836.
[8] E. J, "The principles and practice of medicine," London: Buttler, pp. 508-510, 1839.
[9] H. M, "On the diseases and derangements of the nervous system," London:Ballière, vol. 321, 1841.
[10] R. MH, "Lehrbuch der Nervenkrankheiten des Menschen," Bd I.Berlin: Duncker, vol. 373, 1846.
[11] T. RB, "Certain Diseases of the brain, and other affections of the nervous system," Philadelphia: Lindsay and Blakiston, 1859.
[12] V. A. Charcot JM, "De la paralysie agitante," Gaz hebdomad Med Chir, vol. 8, pp. 765-767, 816-820, 1861.
[13] V. A. Charcot JM, "De la paralysie agitante," Gaz hebdomad Med Chir, vol. 9, pp. 54-59, 1862.
[14] O. L, " Sur la paralysie agitante et la sclérose en plaque géneralisée," Paris : E Martinet, 1867.
[15] C. M, "De la paralysie agitante. Thèse," Paris : Presse de l’Université, 1872.
[16] J. S, "Traité de la pathologie interne," Paris : Delahay, vol. I, pp. 44-50, 1873.
[17] C. JM, "De la paralysie agitante," Paris : Delahay, pp. 159-188, 1886.
[18] C. R, "The relation of paralysis agitans to the Parkinsonian sndrome of epidemic encephalitis," Lancet, vol. II, pp. 263-268, 1925.
[19] T. RB, "The cyclopedia of practical medicine," London: Buttler, vol. III,259, 1934.
[20] J.C. Perrin, and A. Thomas, "Electronic Processing of Moire Fringes Application to Moire Topography and Comparison with Photo- grametry," Applied Optics, vol. 18, 1979.
92
[21] R. D. V. Adams, M, "Tremors, myoclonus, spasms and tics," pp. 69-77, 1981.
[22] e. a. F. Bien, "Absolute distance measurement by variable wavelength interferometry,," Appl. Opt, vol. 20, 400-403 1981.
[23] H. C. L. V. Scrinivasan, and M. Halioua, "Automated Phase Measuring Profilometry of 3-D Diffuse Objects," Applied Optics, vol. 23, 15 Sep 1984. [24] T. C. Strand, "Optical three-dimensional sensing for machine vision," Opt. Eng, vol. 24, pp. 33-40, 1985.
[25] C. C. W. a. H. K. Wickramasinghe, "Optical ranging by wave length multiplexed interferometry," J. Appl. Phy, vol. 60, pp. 1900-1903, 1986.
[26] J. L. Bromberg, "The Birth of the Laser," pp. 26-33, October 1988.
[27] B.V.Manyam, "Paralysis agitans and levodopa in Ayurveda: Ancient Indian medical treatise," Movement disorders, vol. 5, pp. 47-48, 1990.
[28] O. K. a. I. Glatt, "The physics of Moire Metrology," New York, 1990. [29] ISO, ISO/IEC Guide 98:1995,Guide to the expression of uncertainty in measurement: ISO/IEC, 1995.
[30] E. T. Bosch and M. Lescure, "Selected Papers on Laser Distance Measurement," SPIE Optical Engineering Press, Bellingham, WA, vol. MS 115, 1995.
[31] R. ID, "Projection calibration of a laser-strip range finder," Image and Vision computing, 1996.
[32] K. H. JM, "Evolution of Concepts and Definitions of Parkinson’s Disease since 1817," J Hist Neurosci, pp. 200-207, 1996.
[33] C. T. M C de Rijk, M M Breteler, J F Dartigues, L Amaducci, S Lopez-Pousa, J M Manubens-Bertran, A Alpérovitch, and W A Rocca, "Prevalence of parkinsonism and Parkinson''s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson''s disease," vol. 62, pp. 10-15, January 1997.
[34] 林建忠, 雷射測距技術與研究現況, 1999.
[35] G. B. B. Joumet, "A low-cost laser range tinder based on and FMCW-like method," IEEE Trans. IM, vol. 49, August 2000.
[36] B. H. Daniel Post , Peter G. Ifju, "Moiré Methods for Engineering and Science - Moiré Interferometry and Shadow Moiré," Topics in Applied Physics, vol. 77, p. 151, 2000.
[37] D. P. B. Han, "Moiré interferometry for engineering
93
mechanics:current practices and future developments," The Journal of Strain Analysis for Engineering Design, vol. 36, pp. 101-117, 2001.
[38] T. B. Markus-Christian Amann, Marc Lescure and Risto Myllyla and Marc Rioux, "Laser ranging: a critical review of usual techniques for distance measurement," Opt. Eng, vol. 40, pp. 10-19, 2001. [39] J. Bendick, Galen and the Gateway to Medicine: Bethlehem Books, 2002.
[40] 郁道銀,淡恆英, 工程光學, 2002.
[41] 張守進〄劉醇星〄姬梁文, 半導體雷射, 2002.
[42] HEALTH CARE NEWS, 2003.
[43] J. C. e. al, "The impact of comorbid disease and injuries on resource use and expenditures in parkinsonism," NEUROLOGY, vol. 60, pp. 87-93, 2003.
[44] P. U. Unschuld, Huang Di Nei Jing Su Wen: UNIVERSITY OF CALIFORNIA PRESS, 2003.
[45] G. DA, Parkinson’s disease: a guide to treatments, therapies and controlling symptoms, 2004. [46] National Institutes of Health,Parkinson’s Disease, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top