跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱中威
研究生(外文):Chung-Wei Chiu
論文名稱:分集結合技術在相關性中上衰落通道上之二階統計特性
論文名稱(外文):Second-Order Statistics of Diversity Combining Receptions over Correlated Nakagami-m FadingChannels
指導教授:林嘉慶林嘉慶引用關係
指導教授(外文):Jia-Chin Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:89
中文關鍵詞:平均衰落期間水平跨越比例
外文關鍵詞:average fade durationlevel crossing rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,為了兼顧實用與理論,在實驗室中產生了相關性複數中上衰落通道並且分析相關性通道上分集結合之二階統計特性-水平跨越比例和平均衰落區間。在最大-比率結合的推導中 [20],利用了匹配濾波器的概念並且假設接收到的信號彼此間是獨立的。而在先前的研究中[45], [46], [49],他們也是直接利用傳統的最大-比率結合定義-封包平方和。但當接收到的信號間有相關性時,最大-比率結合的傳統定義是錯誤的並且失去了最大訊雜比的優勢。在相關性通道中,最大-比率結合是依照KL 展開式推導獲得 [28],所以在做最大比率結合前,需要消除信號間的相關性,才能使訊號擁有最大訊雜比。
In practice and in theory, correlated complex Nakagami-m fading channels are generated in a laboratory environment, level crossing rate and average fade duration of diversity
combining over correlated Nakagami-m fading channels are analyzed in this paper. In the derivation of maximal-ratio combining [20], it uses the concept about matched filter and assumes that received signals are independent. The maximal-ratio combining method that was conventionally employed in the previous studied [45], [46], [49] directly sums envelope squares across all branches. If the fading channels are correlated, this method is definitely incorrectly performed and undoubtedly loses its predominance. By definition, when the fading channels are correlated, the MRC should be derived in accordance with the KL expansion theorem for random processes [28]. As a result, a whitening process has to be conducted prior to the power accumulation process for the maximum SNR.
Contents…... ............................................................................. iii
List of Figures ............................................................................ v
List of Tables ........................................................................... vii
Chapter 1 Introduction .......................................................... 1
Chapter 2 Review of Nakagami-m Channel Models ........... 4
2.1 Channel Models ................................................................................ 4
2.2 Nakagami-m Fading Channels........................................................ 12
2.3 First-Order Statistics ....................................................................... 15
2.3.1 Outage Probability ............................................................. 15
2.3.2 Average Bit Error Probability ............................................ 15
2.3.3 Channel Capacity ............................................................... 16
2.4 Second-Order Statistics .................................................................. 19
2.4.1 Level Crossing Rate........................................................... 19
2.4.2 Average Fade Duration ...................................................... 20
2.5 Diversity Combining ...................................................................... 20
2.5.1 Diversity Methods ............................................................. 21
2.5.2 Combining Techniques ...................................................... 22
Chapter 3 Fading Simulators .............................................. 24
3.1 Clarke‘s Fading Channel ................................................................ 25
3.2 The Nakagami-m Simulator Based on Sum-of-Sinusoids .............. 27
3.3 Correlated Fading Branches ........................................................... 29
3.3.1 Cholesky Decomposition ................................................... 29
3.3.2 Q.T. Zhang‘ Method .......................................................... 33
3.4 Complex Simulator ......................................................................... 39
Chapter 4 Second-Order Statistics of Diversity Combining
over Correlated Nakagami-m Fading Channels42
4.1 On Nakagami-m Fading Channels .................................................. 42
4.2 On Equal-Gain Combining over Correlated Nakagami-m Fading
Channels ........................................................................................ 46
4.2.1 Non-identical Case ............................................................ 46
4.2.2 Identical Case .................................................................... 50
4.3 On Selection Combining over Correlated Nakagami-m Fading
Channels ........................................................................................ 53
4.3.1 Non-identical Case ............................................................ 53
4.3.2 Identical Case .................................................................... 57
4.4 On Maximal-Ratio Combining over Correlated Nakagami-m
Fading Channels ............................................................................ 59
4.4.1 Identical Case .................................................................... 60
4.4.2 Non-identical Case ............................................................ 63
Chapter 5 Second-Order Statistics of Maximal-Ratio
Combining over Whitened Nakagami-m
Fading Channels ................................................ 66
5.1 On Maximal-Ratio Combining over L- Branch Correlated
Nakagami-m Fading Channels....................................................... 66
5.1.1 Identical Case .................................................................... 67
5.1.2 Non-identical Case ............................................................ 69
5.2 Correlation of Complex Signals ..................................................... 71
5.3 Whitening Method .......................................................................... 74
5.3.1 Eigen Decomposition ........................................................ 74
5.3.2 Cholesky Decomposition ................................................... 75
5.4 Simulation Results ............................................................................ 76
5.4.1 Parameter Settings ............................................................. 76
5.4.2 Simulated and Theoretical Covariance Matrix .................. 77
5.4.3 Simulated and Theoretical PDF, LCR and AFD ................ 78
Chapter 6 Conclusions ......................................................... 82
Bibliography ............................................................................. 83
[1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.
[2] A. Goldsmith, Wireless Communications, Stanford University Press, 2003.
[3] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York:
McGraw-Hill, 2008.
[4] M. Abramowitz and I. A. Stegun, Handbook of Mathenatical Functions. New
York: Dover Publications, 1972.
[5] G. Fraidenraich, J. C. S. S. Filho, and M. D. Yacoub, ―Second-order statistics of
maximal-ratio and equal-gain combining in Hoyt fading,‖ IEEE Commun. Lett.,
vol. 9, no. 1, pp. 19-21, Jan. 2005.
[6] B. Chytil, ―The distribution of amplitude scintillation and the conversion of
scintillation indices,‖ J. Atmos. Terr. Phys., vol. 29, pp. 1175-1177, Sep. 1967.
[7] C. X. Wang, N. Youseef, and M. Patzold, ―Level-crossing rate and average
duration of fades of deterministic simulation models for Nakagami-Hoyt fading
channels,‖ in Proc. WPMC’02, Honolulu, HI, Oct. 2002, pp.272-276.
[8] A. Mehrnia and H. Hashemi, ―Mobile satellite propagation channel part II—A
new model and its performance,‖ in Proc IEEE Vehicle Technology Conf. (VTC’
99), Amsterdam, The Netherlands, Sep. 1999, pp. 2780-2784.
[9] A. Annamalai, C. Tellambura, and V. K. Bhargava, ―Simple and accurate
methods for the outage analysis in cellular mobile radio systems—A unified
approach,‖ IEEE Trans. Commun., vol. 49, pp. 303-316, Feb. 2001.
[10] M. K. Simon and M. S. Alouini, ―A unified approach to the performance analysis
of digital communication over generalized fading channels,‖ in Proc. IEEE, vol.
86, Sep. 1998, pp. 1860-1877.
[11] M. Nakagami, ―The m-distribution–a general formula of intensity distribution of
rapid fading,‖ Statistical Methods in Radio Wave Propagation, W. C. Hoffman,
Ed. Elmsford, NY: Pergamon, 1960.
[12] T. Aulin, ―A modified model for the fading signal at a mobile radio channel,‖
IEEE Trans. Veh. Technol., vol. 28, no. 3, pp. 182-203, Aug. 1979.
[13] H. Suzuki, ―A statistical model for urban radio propagation,‖ IEEE Trans.
Commun., vol. 25, no. 7, pp. 673-680, Jul. 1977.
[14] T. M. Wu, ―Generation of Nakagami-m fading channels,‖ IEEE VTC, vol. 6, pp.
2787-2792, May 2006.
[15] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels,
2nd ed. New York: Wiley, 2005.
[16] M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and
Techniques. New York: McGraw-Hill, 1966.
[17] C. E. Shannon, ―A mathematical theory of communication,‖ Bell Syst. Tech. J.,
vol. 27, pp.379-423, Oct. 1948.
[18] R. J. McEliece and W. E. Stark, ―Channels with block interference,‖ IEEE Trans.
Inform. Theory, pp. 44-53, Jan. 1984.
[19] W. C. Y. Lee, ―Statistical analysis of the level crossings and duration of fades of
the signal from an energy density mobile radio antenna,‖ Bell Syst. Tech. J., vol.
46, pp. 417-448, 1967.
[20] D. G. Brennan, ―Linear diversity combining techniques,‖ in Proc. IRE, vol.47,
Jun. 1959, pp. 1075-1102.
[21] R. H. Clarke, ―A statistical theory of mobile-radio reception,‖ Bell Syst. Tech. J.,
vol. 47, pp.957-1000, Jul-Aug. 1968.
[22] W. C. Jakes, Jr., Ed., Microwave Mobile Communication. New York: Wily, 1974.
[23] K. Zhang, Z. Song, and Y. L. Guan, ―Cholesky decomposition model for
correlated MRC diversity systems in Nakagami fading channels,‖ IEEE VTC, vol.
3, pp. 1515-1519, Sep. 2002.
[24] Q. T. Zhang, ―Efficient generation of correlated Nakagami fading channels with
arbitrary fading parameter,‖ in Proc. ICC, 2002, vol. 3, pp. 1358-1362.
[25] J. C. S. S. Filho and M. D. Yacoub, ―Highly accurate ? ?? Approximation to
the sum of M independent nonidentical Hoyt variates,‖ Electron. Lett., vol. 4, no.
6, pp. 436-438, Mar. 2005.
[26] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes ―On higher order statistics
of the Nakagami-m distribution,‖ IEEE Trans. Veh. Technol., vol. 48, pp.
2360-2369, May 1991.
[27] P. Dent, G. E. Bottomley, and T. Croft, ―Jakes‘ fading model revisited,‖ Electron.
Lett., vol. 29, no. 13, pp. 1162-1163, Jun. 1993.
[28] H. Stark and J. W. Woods, Probability and Random Processes with Application
to Signal Processing, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[29] M. F. Pop and N. C. Beaulieu, ―Limitations of sum-of-sinusoids fading channel
simulators,‖ IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, Apr. 2001.
[30] R. T. Smith and R. B. Minton, Calculus, 2ed ed. New York: McGraw-Hill, 2002.
[31] S. Kotz and J. Adams, ―Distribution of sum of identically distributed
exponentially correlated gamma variables,‖ Annals Math. Stat., vol. 35, pp.
227–283, Jun. 1964.
[32] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
vol. 46, no. 11, pp. 1141-1150, Nov. 1998.
[33] M. D. Yacoub, G. Fraidenraich, and J. C. S. Santos Filho, ―Nakagami-m
phase-envelope joint distribution,‖ Electron. Lett., vol. 41, no. 5, Mar.2005.
[34] N. Youssef, T. Munakata and M. Takeda, ―Fade statistics in Nakagami fading
environments,‖ in Proc. IEEE Int. Symp. Spread Spectrum Techniques and
Applications, Mainz, Germany, 1996, pp. 1244–1247.
[35] L. Yang and M. –S. Alouini, ―Average level crossing rate and average outage
duration of generalized selection combining,‖ IEEE Trans. Commun., vol. 51, no.
12, pp. 1997-2000, Dec. 2003.
[36] G. L. Siqueira and E. J. A. Vasquez, ―Local and global signal variability statistics
in a mobile urban environment,‖ Kiuwer Wireless Pers. Commun., vol. 15, no. 1,
pp. 61-78, Oct. 2000.
[37] S. O. Rice, ―Statistical properties of a sine wave plus random noise,‖ Bell System
Tech. J., vol. 27, pp. 109-157, Jan. 1948.
[38] S. O. Rice, ―Mathematical analysis of random noise,‖ Bell System Tech. J., vol.
23, pp. 282-332, Jul. 1944.
[39] R. S. Hoyt, ―Probability functions for the modulus and angle of the normal
complex variate,‖ Bell System Tech. J., vol. 26, pp. 318-359, Jan. 1947.
[40] W. C. Y. Lee, ―Level crossing rates of an equal-gain predetection diversity
combiner,‖ IEEE Trans. Commun. Technol., vol. COM-18, pp. 417-426, Aug.
1970.
[41] F. Adachi, M. T. Feeney, and J. D. Parson, ―Effects of correlated fading on level
crossing rates and average fade durations with predetection diversity reception,‖
Proc. Inst. Elect. Eng., vol. 135, pp. 11-17, Feb. 1988.
[42] W. R. Braun and U. Dersch, ―A physical mobile radio channel model,‖ IEEE
Trans. Veh. Technol., vol. 40, no. 2, pp. 472-482, May 1991.
[43] K.W. Chan, Second-Order Statistics for Diversity Combining Techniques in
Nakagami Fading Channels, National Central University, June 2009
[44] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
vol. 46, no. 11, pp. 1459-1467, Nov. 1998.
[45] Q. T. Zhang, ―Maximal-ratio combining over Nakagami fading channels with an
arbitrary branch covariance matrix,‖ IEEE Trans. Veh. Technol., vol. 48, no. 4,
pp. 1141-1150, Jul. 1999.
[46] D. Li and V. K. Prabhu, ―Average level crossing rates and average fade durations
for maximal-ratio combining in correlated Nakagami channels,‖ in Proc. WCNC,
Mar. 2004, pp. 339-344.
[47] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, ―On the multivariate
Nakagami-m distribution with exponential correlation,‖ IEEE Trans. Commun.,
vol. 51, no. 8, Aug. 2003.
[48] J. Reig, ―Multivariate Nakagami-m distribution with constant correlation
model,‖ Int. J. Electron. Commun. (AEU), vol. 63, no. 1, Jan.
[49] V. A. Aalo, ―Performance of maximal-ratio diversity systems in a correlated
Nakagami-m fading environment,‖ IEEE Trans. Commun., vol. 43, no. 8, pp.
2360-2369, Aug. 1995.
[50] O. C. Ugweje and V. A. Aalo, ―Performance of selection diversity system in
correlated Nakagami fading,‖ IEEE VTC, vol. 3, pp. 1488-1492, May 1997.
[51] M. S. Alouini, A. Abdi, and M. Kaveh, ―Sum of gamma variates and
performance of wireless communication systems over Nakagami-fading
channels,‖ IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1471-1480, Nov. 2001.
[52] J. Reig and N. Cardona, ―Nakagami-m approximate distribution of sum of two
Nakagami-m correlated variables,‖ Electron. Lett., vol. 36, no. 11, pp. 978-980,
May 2000.
[53] J. Reig, L. Rubio and N. Cardona, ―Bivariate Nakagami-m distribution with
arbitrary fading parameters, ‖ Electron. Lett., vol. 38, no. 25, pp. 1715-1717, Dec.
2002.
[54] C. Tellambura, A. Annamalai, and V. K. Bhargava, ―Contour Integral
Representation for Generalized Marcum-Q Function and Its Application to
Unified Analysis of Dual-Branch Selection Diversity over Correlated
Nakagami-m Fading Channels,‖ IEEE VTC, vol. 2, pp. 1031-1034, May 2000.
[55] Lin Yang and Mohamed-Slim Alouini, ―An Exact Analysis of the Impact of
Fakding Correlation on the Average Level Crossing Rate and Average Outage
Duration of Selection Combining,‖ IEEE VTC, vol. 2, pp. 241-245, Apr. 2003.
[56] Chantri Polprasert and James A. Ritcey, ―A Nakagami Fading Phase Difference
Distribution and its Impact on BER Performance,‖ IEEE Trans. Wireless
Commun., vol. 7, no. 7, pp. 2805-2813, Jul. 2008.
[57] Jia-Chin Lin, ―A modified PN code tracking loop for direct-sequence
spread-spectrum communication over arbitrarily correlated multipath fading
channels,‖ IEEE Journ. Select. Area. Commun., vol. 19, no. 12, pp. 2381-2395,
Dec. 2001.
[58] Jia-Chin Lin, ―Differentially coherent PN code acquisition based on a matched
filter for chip-asynchronous DS/SS communications,‖ IEEE Trans. Vehic.
Technol., vol. 51, no. 6, pp. 1596-1599, Nov. 2002.
[59] Jia-Chin Lin, ―Differentially coherent PN code acquisition with full-period
correlation in chip-synchronous DS/SS receivers,‖ IEEE Trans. Commun., vol.
50, no. 5, pp. 698-702, May 2002.
[60] Jia-Chin Lin, ―A frequency offset estimation technique based on frequency error
characterization for OFDM communication on time-varying multipath fading
channels,‖ IEEE Trans. Vehic. Technol., vol. 56, no. 3, pp. 1209-1222, May
2007.
[61] Jia-Chin Lin, ―Coarse frequency offset acquisition via subcarrier differential
detection for OFDM communications,‖ IEEE Trans. Commun., vol. 54, no. 8, pp.
1415-1426, Aug. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top