跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李世文
論文名稱:車輛-行人碰撞之頭部傷害分析
論文名稱(外文):Analysis of pedestrian head injury criterion in vehicle/pedestrian collisions
指導教授:曾文功
指導教授(外文):Tseng, Wen-Kung
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:車輛科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:128
中文關鍵詞:行人碰撞頭部傷害指數類神經網路
外文關鍵詞:Pedestrian impactHead Injury CriterionRadial Basis Function Neural NetworkPC-Crash
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著汽車的改善及其便利性,汽車已成為現代人最重要的交通工具
。隨著汽車數量的增加,車禍事故也相形提高。車禍常常會使人受傷或造成嚴重的傷害,且行人死亡在因車禍而喪生數目中佔有很大比例,因此有必要改善行人安全。行人死亡在交通意外事故死亡中,佔有相當大的比例。研究指出,50%以上的行人死亡是由於頭部傷害所造成,而傷害多因頭部撞擊至車體的引擎蓋與擋風玻璃處。另外國內在肇事現場資料蒐集與作業流程,皆以人工的方式進行記錄及量測,常造成現場量測錯誤及資料蒐集不完整的問題。本研究採用PC-Crash 3D模擬軟體來分析行人在交通意外事故中之頭部受傷指數,以提供法院及各機關在判定責任歸屬時之參考。首先探討的為車輛型式,該部分使用轎車及巴士,並做行人之運動及動態分析。基於這些結果,探討行人頭部傷害指數。因碰撞時車輛與行人各部位間會彼此影響,因此再度探討車輛參數及行人參數對行人安全之相關性,車輛參數包含車種、車重、車速,行人參數包含身高、體重。最後經由徑向基類神經網路來訓練車輛與行人參數,希望在經由訓練後,受訓練和期望的頭部受傷指數(HIC)值愈接近愈好,以提高肇事鑑定之準確率。整體而言,肇事重建軟體之運用,有助於提升鑑定品質與提高鑑定之公信力,並協助降低或減輕行人傷害及社會成本。

As automobile improved, they have become one important transportation means for modern people. While the use of automobile increases, the accidents happen more frequently. Automobile accidents normally would cause injuries to humans. Among accidental causalities due to vehicle crash, pedestrian fatalities constitute a large portion. Therefore, there is a need to improve pedestrian safety. Previous studies show that more than 50% of pedestrian fatalities are caused by head injuries, most of which are due to impact with the hood or windshield. Besides, in our country we record and measure the accident data in an artificial way, which usually leads to problems of incorrect measurement and incomplete data collection. This study uses the PC-Crash simulation software to analyze the Head Injury Criterion of the pedestrians in traffic accidents. These accidents reconstruction data can thus be applied by the authorities concerned as the major reference. The first part of the study explores vehicle type’s influence on pedestrian safety. Two major types of vehicle, car and bus, are used. The responses in kinematics and dynamics are described. Based on the results, the possible head injuries of the pedestrians are discussed. Since the nature of direct impact, the interacting properties between pedestrian segments and vehicle components are central to pedestrian impact, the second part of the study is to discuss pedestrian safety’s relevance with vehicle parameter and pedestrian parameter. Vehicle parameter includes type, mass and velocity. Pedestrian parameter includes height and weight. The study uses RBF to train the vehicle and pedestrian parameters. After training, the closer the trained output HIC is to the expected value, the better the performance is. Overall, using PC-Crash software will increase the quality and credibility of accident authentication and helps in reducing head injuries and social cost.
摘要.....................................................I
Abstract................................................II
誌謝 ....................................................IV
Contents.................................................V
List of tables.........................................VII
List of figures.......................................VIII
Chapter 1 Introduction...................................1
Chapter 2 Theory.........................................4
2.1 Introduction of PC-Crash.............................4
2.1.1 The Trajectory Model...............................6
2.1.2 The Multibody Model ..............................13
2.2 Exploration of Head Injury Criterion................23
2.2.1 Background on Head Injuries ......................23
2.2.2 Head Injury Tolerance ............................25
2.2.3 Head injury criterion functional..................26
2.2.4 Pedestrian Accident Kinematics ...................29
2.3 Radial Basis Function Neural Network................31
2.3.1 RBF network architecture..........................32
2.3.2 Training of RBF networks..........................34
Chapter 3 Working with PC-Crash.........................36
3.1 Loading Vehicle.....................................36
3.2 Setting Vehicle.....................................38
3.3 Environment of the accident.........................40
3.3.1 Scenes............................................40
3.3.2 Placement of vehicles, pedestrians and obstacles..41
3.3.3 Sequences.........................................42
3.4 The Pedestrian Model................................43
3.5 Paths...............................................45
Chapter 4 Analysis of Simulation Results................46
4.1 Head Injury of Pedestrians with the Height..........46
4.2 Summary.............................................47
Chapter 5 Conclusion....................................49
References..............................................50
Appendix................................................52

List of tables
Table 1.1 Head Injury Criterion for Various Dummy Sizes.52
Table 2.1 Vehicle Values................................52
Table 2.2 Multibody system..............................53
Table 4.1 Comparative predictions of three models.......53

List of figures
Figure 2.1 the three coordinate systems.................54
Figure 2.2 the vehicle model rotations..................54
Figure 2.3 the pedestrian multibody model...............55
Figure 2.4 inertial space and body fixed coordinate systems.................................................55
Figure 2.5 steps during the simulation of the multibody system..................................................56
Figure 2.6 joint definition.............................56
Figure 2.7 ellipsoid to ellipsoid contact...............57
Figure 2.8 ellipsoid to plane contact. .................57
Figure 2.9 Head section (left) and fatal head injury with subdural hematoma(right)................................58
Figure 2.10 HIC-determining maximum-intervals...........58
Figure 2.11 the crash performed without an airbag.......59
Figure 2.12 the crash performed with an airbag..........59
Figure 2.13 Structure of a single-hidden-layer RBFN with n input values, m basis functions and one output value....60
Figure 3.1 Vehicle database.............................61
Figure 3.2 load a custom vehicle........................61
Figure 3.3 Vehicle Geometry.............................62
Figure 3.4 Vehicle suspension properties................63
Figure 3.5 Occupants and cargo..........................64
Figure 3.6 Rear brake force.............................65
Figure 3.7 Vehicle shape................................66
Figure 3.8 Trailer......................................67
Figure 3.9 Example of a 2D scene drawing................68
Figure 3.10 Draw toolbar................................68
Figure 3.11 3D road object dialog box...................69
Figure 3.12 Example of a 3D scene drawing...............69
Figure 3.13 position & velocity dialog box..............70
Figure 3.14 Sequences dialog box........................71
Figure 3.15 Multibody model dialog box..................72
Figure 3.16 Path & Path anchor..........................72
Figure 4.1 HIC Values at Different Speeds with braking
(Car mass:1000kg, Pedestrian height/mass:160cm/40kg, 50kg, 60kg).............................................73
Figure 4.2 HIC Values at Different Speeds without braking
(Car mass:1000kg, Pedestrian height/mass:160cm/40kg, 50kg, 60kg).............................................73
Figure 4.3 HIC Values at Different Speeds with braking
(Car mass:1500kg, Pedestrian height/mass:160cm/40kg, 50kg, 60kg).............................................74
Figure 4.4 HIC Values at Different Speeds without braking
(Car mass:1500kg, Pedestrian height/mass:160cm/40kg, 50kg, 60kg).............................................74
Figure 4.5 HIC Values at Different Speeds with braking
(Car mass:2000kg, Pedestrian height/mass:160cm/40kg, 50kg, 60kg).............................................75
Figure 4.6 HIC Values at Different Speeds without braking
(Car mass:2000kg, Pedestrian height/mass:160cm/40kg, 50kg, 60kg).............................................75
Figure 4.7 HIC Values at Different Speeds with braking
(Bus mass:10t, Pedestrian height/mass:160cm/40kg, 50kg, 60kg)...................................................76
Figure 4.8 HIC Values at Different Speeds without braking
(Bus mass:10t, Pedestrian height/mass:160cm/40kg, 50kg, 60kg)...................................................76
Figure 4.9 HIC Values at Different Speeds with braking
(Bus mass:15t, Pedestrian height/mass:160cm/40kg, 50kg, 60kg)...................................................77
Figure 4.10 HIC Values at Different Speeds without braking
(Bus mass:15t, Pedestrian height/mass:160cm/40kg, 50kg, 60kg)...................................................77
Figure 4.11 HIC Values at Different Speeds with braking
(Bus mass:20t, Pedestrian height/mass:160cm/40kg, 50kg, 60kg)...................................................78
Figure 4.12 HIC Values at Different Speeds without braking
(Bus mass:20t, Pedestrian height/mass:160cm/40kg, 50kg, 60kg)...................................................78
Figure 4.13 HIC Values at Different Speeds with braking
(Car mass:1000kg, Pedestrian height/mass:170cm/50kg, 60kg, 70kg).............................................79
Figure 4.14 HIC Values at Different Speeds without braking
(Car mass:1000kg, Pedestrian height/mass:170cm/50kg, 60kg, 70kg).............................................79
Figure 4.15 HIC Values at Different Speeds with braking
(Car mass:1500kg, Pedestrian height/mass:170cm/50kg, 60kg, 70kg).............................................80
Figure 4.16 HIC Values at Different Speeds without braking
(Car mass:1500kg, Pedestrian height/mass:170cm/50kg, 60kg, 70kg).............................................80
Figure 4.17 HIC Values at Different Speeds with braking
(Car mass:2000kg, Pedestrian height/mass:170cm/50kg, 60kg, 70kg).............................................81
Figure 4.18 HIC Values at Different Speeds without braking
(Car mass:2000kg, Pedestrian height/mass:170cm/50kg, 60kg, 70kg).............................................81
Figure 4.19 HIC Values at Different Speeds with braking
(Bus mass:10t, Pedestrian height/mass:170cm/50kg, 60kg, 70kg)...................................................82
Figure 4.20 HIC Values at Different Speeds without braking
(Bus mass:10t, Pedestrian height/mass:170cm/50kg, 60kg, 70kg)...................................................82
Figure 4.21 HIC Values at Different Speeds with braking
(Bus mass:15t, Pedestrian height/mass:170cm/50kg, 60kg, 70kg)...................................................83
Figure 4.22 HIC Values at Different Speeds without braking
(Bus mass:15t, Pedestrian height/mass:170cm/50kg, 60kg, 70kg)...................................................83
Figure 4.23 HIC Values at Different Speeds with braking
(Bus mass:20t, Pedestrian height/mass:170cm/50kg, 60kg, 70kg)...................................................84
Figure 4.24 HIC Values at Different Speeds without braking
(Bus mass:20t, Pedestrian height/mass:170cm/50kg, 60kg, 70kg)...................................................84
Figure 4.25 HIC Values at Different Speeds with braking
(Car mass:1000kg, Pedestrian height/mass:180cm/70kg, 80kg, 90kg).............................................85
Figure 4.26 HIC Values at Different Speeds without braking
(Car mass:1000kg, Pedestrian height/mass:180cm/70kg, 80kg, 90kg).............................................85
Figure 4.27 HIC Values at Different Speeds with braking
(Car mass:1500kg, Pedestrian height/mass:180cm/70kg, 80kg, 90kg).............................................86
Figure 4.28 HIC Values at Different Speeds without braking
(Car mass:1500kg, Pedestrian height/mass:180cm/70kg, 80kg, 90kg).............................................86
Figure 4.29 HIC Values at Different Speeds with braking
(Car mass:2000kg, Pedestrian height/mass:180cm/70kg, 80kg, 90kg).............................................87
Figure 4.30 HIC Values at Different Speeds without braking
(Car mass:2000kg, Pedestrian height/mass:180cm/70kg, 80kg, 90kg).............................................87
Figure 4.31 HIC Values at Different Speeds with braking
(Bus mass:10t, Pedestrian height/mass:180cm/70kg, 80kg, 90kg)...................................................88
Figure 4.32 HIC Values at Different Speeds without braking
(Bus mass:10t, Pedestrian height/mass:180cm/70kg, 80kg, 90kg)...................................................88
Figure 4.33 HIC Values at Different Speeds with braking
(Bus mass:15t, Pedestrian height/mass:180cm/70kg, 80kg, 90kg)...................................................89
Figure 4.34 HIC Values at Different Speeds without braking
(Bus mass:15t, Pedestrian height/mass:180cm/70kg, 80kg, 90kg)...................................................89
Figure 4.35 HIC Values at Different Speeds with braking
(Bus mass:20t, Pedestrian height/mass:180cm/70kg, 80kg, 90kg)...................................................90
Figure 4.36 HIC Values at Different Speeds without braking
(Bus mass:20t, Pedestrian height/mass:180cm/70kg, 80kg, 90kg)...................................................90
Figure 4.37 Motion of pedestrian in frontal-side crash..91
Figure 4.38 Comparison of HIC values with speed of the vehicle.................................................91
Figure 4.39 the acceleration values of pedestrian’s head impacting the bus.......................................92
Figure 4.40 the acceleration values of pedestrian’s head impacting the car.......................................92

1.Henn, H.-W. 1998, “Crash Tests and the Head Injury Criterion”, Teaching Mathematics and Its Applications Volume 17, No. 4.
2.Versace, J.“A Review of the Severity Index, Proceedings 15th Stapp Car Crash Conference”, SAE paper 710881, pp 771-796.
3.Steffan D. 2008,“Operating Manual of PC-Crash,MEA”, Austria.
4.Steffan D. 2008,“TechnicalManual of PC-Crash,MEA”, Austria.
5.Moser A., Steffan H., Kasanický G. 1999, “The Pedestrian Model in PC-Crash –The Introduction of a Multi Body System and its Validation” , Society of Automotive Engineers,0445.
6.Deck C., Willinger R. 2009, “Head injury prediction tool for protective systems optimization” , Strasbourg University, IMFS-CNRS.
7.Portions J. 1990,“Automotive Safety: Anatomy, Injury, Testing and Regulation”, SAE.
8.Tou, J. T., Gonzalez, R. C. 1974“Pattern Recognition. Reading, MA: Addison-Wesley”.
9.Park, J., Sandberg, J. W. 1991, “Universal approximation using radial basis functions network” , Neural Computation, vol. 3, pp. 246-257.
10.Poggio, T., Girosi, F. 1990, “Networks for approximation and learning”, Proc. IEEE, vol. 78, no. 9, pp. 1481-1497.
11.Haykin, S. 1994“Neural Networks: A comprehensive Foundation. Upper Saddle River”, NJ: Prentice Hall.
12.Moody, J. 1989, “Fast learning in networks of locally-tuned processing units” , Neural Computation, vol. 1, pp. 281-294.
13.Bors, A.G., Pitas, I. 1996, “Median radial basis functions neural network”, IEEE Trans. on Neural Networks, vol. 7, no. 6, pp. 1351-1364.
14.M.J. Orr. 1996,“Introduction to Radial Basis Function Networks, Centre for Cognitive Science” , Edinburgh University.
15.Zimmermann H.-J. 1995,“Neuro and Fuzzy: Technologies — Anwendungen” , Du¨sseldorf, VDI-Verlag.
16.Patterson D. 1996, “Artificial Neural Networks: Theory and Applications”, Prentice-Hall, Munich, pp. 159–232.
17.Abayomi O., John G., “An Analytical Assessment of Pedestrian Head Impact protection” , United KingdomPaper Number 98-SlO-W-17.
18.George T. 2007, “Aspects Regarding The Impact Speed, AIS and HIC Relationship for Car-Pedestrian Traffic Accidents” ,Fascicle of Management and Technological Engineering, Volume VI (XVI).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 6.張瑞芬:《彷彿在君父的城邦——郝譽翔《逆旅》 、駱以軍《月球姓氏》、朱天心《漫遊者》三書評介》,《明道文藝》第299期(2001年2月),頁29-37。
2. 4.張惠菁:<小說世界,最後的房間--讀駱以軍「妻夢狗」與「第三個舞者」>,《誠品好讀月報》試刊第2期(2000年5月),頁26。
3. 5.駱以軍:〈停格的家族史--《月球姓氏》的寫作源起〉,《文訊》第184期(2001年2月),頁100-102。
4. 3.王明珂:<臺灣與中國的歷史記憶與失憶>,《歷史月刊》第105期(1996年10月),頁34-40。
5. 1.陳芳英:〈亦狂亦俠亦溫文──駱以軍和他的作品〉,《文訊》,(1993年8月),頁101-103。
6. 7.黃錦樹:《死者的房間——讀駱以軍《遣悲懷》,《聯合文學》第207期(2002年1月),頁132-134。
7. 8.潘弘輝:《裹小腳刑傷—駱以軍》,《幼獅文藝》第577期(2002年1月),頁44-45。
8. 12.楊佳嫻:<在歷史的裂隙中-駱以軍《月球姓氏》的記憶書寫>,《中外文學》第32卷第1期(2003年6月),頁109-125。
9. 16.胡衍南:<論「外省第二代」作家的父親(家族)書寫>,《清華中文學林》第1期(2005年5月),頁109-134。
10. 17.楊佳嫻:<離/返鄉旅行:以李渝、朱天文、朱天心和駱以軍描寫臺北的小說為例>,《中外文學》第34卷2期(2005年7月),頁133-155。
11. 18.楊凱麟:《駱以軍的第四人稱單數書寫(2):時間製圖學》,收錄於《清華學報》第35卷第2期(2005年12月),頁269-403。
12. 19.莊宜文:<曝光的底片--讀駱以軍《我們》>,《文訊》總第238期(2005年8月),頁52-53。
13. 21.楊凱麟:<駱以軍的第四人稱單數書寫(1):空間考古學》>,《中外文學》第34卷第9期(2006年2月),頁283-304。
14. 22.邱貴芬:《「在地性」的生成:從台灣現代派小談「根」與「路徑」的辯證》,《中外文學》第23卷第11期(2006年3月),頁125-154。
15. 23.劉亮雅:《文化翻譯:後現代、後殖民與解嚴以來的臺灣文學》,《中外文學》第406期(2006年3月),頁61-84。