(3.238.7.202) 您好!臺灣時間:2021/03/02 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王木山
論文名稱:鋰和鎂摻雜於氧化鋅薄膜之結構變化與光電特性研究
指導教授:林祐仲
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:70
中文關鍵詞:溶膠凝膠法鋰間隙氧化鋅光致螢光能譜X光繞射分析應力
相關次數:
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠凝膠法成長鋰摻雜氧化鋅薄膜與鋰和鎂共摻雜氧化鋅薄膜並探討薄膜結構之光與電特性的影響。將進行X光繞射分析、掃瞄式電子顯微鏡、光致螢光能譜與電特性量測,我們在n型鋰摻雜氧化鋅薄膜中發現了解離反應機制所主導的現象,此機制是指鋰原子取代鋅原子缺陷轉變成鋰間隙缺陷的現象,並且鋅空位缺陷也將伴隨著產生。而其中由施體受體對的電子電洞結合發光與FA能量躍遷訊號則分別證實了鋅空位受體與 鋰取代鋅受體其能階位置位於價帶頂端之上335±15 meV與100±3 meV處。觀察到晶粒大小與導電型態將會隨著鋰摻雜量變化而改變。而當鋰摻雜量增加時發現XRD之2θ值異常偏移且鋰間隙與氧空位缺陷濃度增加。推測這些施體缺陷將使導電型態改變。而鋰與鎂共摻雜氧化鋅薄膜其導電型態轉變成n型是因為薄膜內由富氧(O-rich)轉變為富鋅(Zn-rich)情形,進而導致鋰間隙與氧空位缺陷施體型缺陷的增加。
Abstract
The effect of Li(Li and Mg) doping on the optical and electrical
properties of sol-gel ZnO films was investigated in this study. According
to the observed results from by X-ray diffraction, scanning electron
microscope, photoluminescence and conductivity measurements, we
found that the domination of the dissociative mechanism in Li-doped
n-type ZnO films led to transformation from Li substituting for Zn (LiZn)
to Li interstitials, involving the formation of Zn vacancies (VZn). The
VZn (LiZn) acceptor state, with an energy level located at 335 ±15 (100 ± 3)
meV above the valence band maximum is identified from donor-acceptor
pair (free-to-neutral-acceptor) transitions. A dependence of crystallite size
and conduction type upon Li content has been found. The abnormal shift
in the 2θ value and defect concentration increase with increasing Li
content, suggesting that these donors (that is, interstitial Li and oxygen
vacancy) and the crystal structure interact to change the conduction type.
The authors pointed out that n-type conversion of LiZnMgO films is a
result of the increase of the donor density based on transformation from O
to Zn rich.
中文摘要 -------------------------------------------------- I
英文摘要 ------------------------------------------------- II
目錄 ------------------------------------------------- III
圖目錄 -------------------------------------------------- IV
表目錄 --------------------------------------------------- V

第一章 緒論----------------------------------------------- 1
1.1 前言 ------------------------------------------------ 1
1.2 氧化鋅簡介 ------------------------------------------- 3
1.3 研究動機 ¬------------------------------------------- 6

第二章 實驗儀器與儀器原理 --------------------------------- 8
2.1 光激螢光光譜儀 --------------------------------------- 8
2.1.1 光激螢光光譜簡介 -------------------------------- 8
2.1.2 光激螢光原理 ---------------------------------- 11
2.1.3 光激螢光儀器架構 ------------------------------- 16
2.2 X光繞射--------------------------------------------- 18
2.2.1 X光繞射簡介------------------------------------ 18
2.2.2 X光對晶體之繞射-------------------------------- 18
2.3 感應耦合電漿發射光譜分析------------------------------- 23
2.3.1 感應耦合電漿發射光譜簡介------------------------- 23
2.3.2 感應耦合電漿發射光譜原理------------------------- 24
2.4 霍爾效應量測----------------------------------------- 26
2.4.1 霍爾效應簡介----------------------------------- 26
2.4.2 霍爾效應原理----------------------------------- 26
2.4.3 凡得瓦量測法----------------------------------- 27

第三章 實驗步驟 ------------------------------------------ 31
3.1 ZnO、LixZn1-xO與LixZn1-x-yMgyO薄膜製作--------------- 31
3.1.1 溶膠凝膠法之溶膠配置---------------------------- 31
3.1.2 旋轉塗佈法沉積薄膜------------------------------ 32
3.1.3 薄膜樣品資訊----------------------------------- 34
3.2 儀器量測 -------------------------------------------- 35
3.2.1 ICP-OES量測----------------------------------- 35
3.2.2 X光繞射量測 ----------------------------------- 35
3.2.3 變溫PL量測------------------------------------- 35
3.2.4 霍爾效應量測 ---------------------------------- 35
3.2.5 FE-SEM量測 ----------------------------------- 36

第四章 實驗結果與討論 ------------------------------------ 37
4.1 Li摻雜ZnO薄膜---------------------------------------- 37
4.1.1 X光繞射分析------------------------------------ 37
4.1.2 變溫光激螢光光譜分析---------------------------- 42
4.1.3 霍爾電性量測----------------------------------- 47
4.1.4 掃描式電子顯微鏡量測---------------------------- 48
4.2 Li與Mg共摻雜ZnO薄膜---------------------------------- 50
4.2.1 X光繞射分析------------------------------------ 50
4.2.2 變溫光激螢光光譜分析---------------------------- 56
4.2.3 霍爾電性量測----------------------------------- 59
4.2.4 掃描式電子顯微鏡量測---------------------------- 61
第五章 結論 --------------------------------------------- 63
參考文獻 ------------------------------------------------- 65

圖目錄
圖1-1、各種常見的點缺陷在晶體結構上之示意圖-------------- 5
圖1-2、ZnO晶格結構圖---------------------------------- 5
圖1-3、ZnO相關缺陷能階位置圖--------------------------- 6
圖2-1、無機材料激發光激發過程-------------------------- 10
圖2-2、直接能隙與間接能隙能帶示意圖--------------------- 10
圖2-3、半導體內各種輻射躍遷的訊號----------------------- 15
圖2-4、DAP能量狀態示意圖------------------------------- 15
圖2-5、PL 系統架構示意圖------------------------------- 17
圖2-6、可見光對針孔的繞射圖形與其強度和空間的關係圖-------- 21
圖2-7、布拉格繞射示意圖-------------------------------- 21
圖2-8、掃描型態為ω-scan ------------------------------ 22
圖2-9、掃描型態為θ-2θscan ---------------------------- 22
圖2-10、ICP-OES 儀器的示意圖-------------------------- 26
圖2-11、霍爾效應示意圖-------------------------------- 29
圖2-12、凡得瓦霍爾量測與樣品示意圖---------------------- 29
圖2-13、幾何修正項F 與相對電阻比Rr 關係圖-------------- 30
圖3-1、實驗流程圖------------------------------------ 33
圖4-1、XRD 繞射光譜圖、(a)玻璃基板、(b)ZnO 薄膜、(c) Li0.008Zn0.992O薄膜、(d)Li0.013Zn0.987O 薄膜與(e)Li0.018Zn0.982O 薄膜------------ 41
圖4-2、PL 量測(10K)、(a)ZnO 薄膜、(b) Li0.008Zn0.992O 薄膜
、(c)Li0.013Zn0.987O 薄膜與(d)Li0.018Zn0.982O 薄膜------ 45
圖4-3、PL 量測Li0.008Zn0.992O 薄膜隨著溫度變化其峰值A 與峰值
B 的峰值位置關係圖-------------------------46
圖4-4、FE-SEM 圖(a)Li 0 . 0 0 8Zn0 . 9 9 2O、(b)Li 0 . 0 1 3Zn0 . 9 8 7O 與
(c)Li0.018Zn0.982O薄膜表面形貌 (倍率10萬)---------- 49
圖4-5、XRD 繞射光譜圖、玻璃基板、(a) Li0.008Zn0.933Mg0.059O
、(b) Li0.012Zn0.930Mg0.058O 與(c) Li0.022Zn0.918Mg0.060O 薄膜------- 53
圖4-6、經歸一化之PL 光譜圖(10 K)、(a) Li0.008Zn0.992O 與(b)
Li0.008Zn0.933Mg0.059O------------------------- 58
圖4-7、經歸一化之PL 光譜圖(10K)、(a) Li0.008Zn0.933Mg0.059O、
(b)Li0.012Zn0.930Mg0.058O(c)Li0.022Zn0.918Mg0.060O--------59
圖4 - 8 、F E- S EM 量測, ( a ) Li 0 . 0 0 8 Zn 0 . 9 3 3Mg 0 . 0 5 9O、( b )
Li0.012Zn0.930Mg0.058O與(c) Li0.022Zn0.918Mg0.060O表面形貌- 62

表目錄
表3-1、薄膜樣品資訊----------------------------------- 34
表4-1、(002)面繞射峰值位置、晶格常數c 與應力----------- 42
表4-2、PL 量測LixZn1-xO 薄膜之A 與B 峰值強度比值--------46
表4-3、ZnO 與LixZn1-xO 薄膜之霍爾量測數據---------- 48
表4-4、LixZn1-x-yMgyO 薄膜根據XRD 所估算之粒徑大小------54
表4-5、ZnO、Li0.008Zn0.992O 與Li0.008Mg0.059Zn0.85O 之XRD 數據----- 54
表4-6、ZnO、LixZn1-xO 與LixZn1-x-yMgyO 結構應力值---------- 55
表4-7、ZnO、LixZn1-xO 與LixZn1-x-yMgyO 薄膜霍爾量測--------61
[1] 李雅明,半導體的故事(新新聞,新竹,1999).
[2] 李世鴻,半導體工程原理(全威圖書,台北,2002).
[3] C. Jagadish and S. Pearton, Zinc Oxide Bulk, Thin
Films and Nanostructures (Elsevier, Oxford, 2006).
[4] K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide
Bandgap Semiconductors(Springer, Heidelberg, 2007).
[5] Y. J. Lin, C. L. Tsai, C. J. Liu, L. Horng, Y. T.
Shih, M. S. Wang, C. S. Jhang, and C. S.
Huang, “Ferromagnetism study of Co0.2MgxZn0.8-xO
films prepared by the sol-gel method,” J. Sol-Gel
Sci. Technol. 52, 109 (2009).
[6] Y. J. Lin, S. S. Chang, H. C. Chang, and Y. C.
Liu, “High-barrier rectifying contacts on undoped ZnO
films with (NH4)2Sx treatment owing to Fermi-level
pinning,” J. Phys. D: Appl. Phys. 42,075308 (2009).
[7] C. L. Tsai, Y. J. Lin, Y. M. Chin, W. R. Liu, W. F.
Hsieh, C. H. Hsu, and J. A. Chu, “Low-resistance
nonalloyed ohmic contacts on undoped ZnO films grown
by pulsed-laser deposition ,” J. Phys. D: Appl. Phys.
42, 095108 (2009).
[8] S. B. Zhang, S. H. Wei, and Alex Zunger, “Intrinsic n
-type versus p-type doping asymmetry and the defect
physics of ZnO,” Phys. Rev. B 63, 075205 (2001).
[9] C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p
-type doping difficulty in ZnO: The impurity
perspective,” Phys. Rev. B 66, 073202 (2002).
[10] Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu,
B. H. Zhao, and S. Limpijumnong, “Identification of
acceptor states in Li-doped p-type ZnO thin films,”
Appl. Phys. Lett. 89, 042106 (2006).
[11]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He,
L. P. Zhu, J. Y.Huang, L. Wang, J. Yuan, B. H. Zhao,
and X. H. Li, “Control of p- and n-type conductivities
in Li-doped ZnO thin films,” Appl. Phys. Lett. 89,
112113 (2006).
[12]陳秀連,以化學法製備均一粒徑氧化鋅粉體與發光特性之研究 (國立台灣
科技大學材料科技研究所,台北,2002).
[13]T. Sekiguchi, N. Ohashi, and
Y.Terada, “Cathodoluminescence study on the
hydrogenation of ZnO luminescence,” Jpn. J. Phys, 36,
289 (1997).
[14]X. Wei, B. Man, C. Xue, C. Chen, and M. Liu, “Blue
luminescent center and ultraviolet-emission dependence
of ZnO films prepared by pulsed laser deposition,”
Jpn. J. Appl. Phys. 45, 8586 (2006).
[15]Y. J. Lin and C. L. Tsai, “Changes in surface band
bending, surface work function, and sheet resistance of
undoped ZnO films due to (NH4)2Sx treatment,” J. Appl.
Phys. 100, 113721 (2006).
[16]Y. W. Heo, D. P. Norton, and S. J. Pearton, “Origin of
green luminescence in ZnO thin film grown by molecular-
beam epitaxy,” J. Appl. Phys. 98, 073502 (2005).
[17]A. Carvalho, A. Alkauskas, A. Pasquarello, A. K.
Tagantsev, and N. Setter, “Li-related defects in ZnO:
Hybrid functional calculations,” Physica B, 404, 23
(2009).
[18]Y. J. Lin, P. H. Wu, C. L. Tsai, C. J. Liu, C. T. Lee,
H. C. Chang, Z. R. Lin, and K. Y. Jeng, “Mechanisms of
enhancing band-edge luminescence of Zn1-xMgxO prepared
by the sol-gel method,” J. Phys. D: Appl. Phys. 41,
125103 (2008).
[19]汪建民,材料分析(中國材料科學學會,新竹,1998).
[20]K. H. Kim, K. C. Park, and D. Y. Ma, “Structural,
electrical and optical properties of aluminum doped
zinc oxide films prepared by radio frequency magnetron
sputtering,” J. Appl. Phys. 81, 7764 (1997).
[21]C. L. Tsai, Y. J. Lin, C. J. Liu, L. Horng, Y. T. Shih,
M. S. Wang, C. S. Huang, C. S. Jhang, Y. H. Chen, and
H. C. Chang, “Structural, electrical, optical and
magnetic properties of Co0.2AlxZn0.8-xO films,” Appl.
Surf. Sci. 255, 8643 (2009).
[22]M. Joseph, H. Tabata, and T. Kawai, “Ferroelectric
behavior of Li-doped ZnO thin films on Si(100) by
pulsed laser deposition,” Appl. Phys. Lett. 74, 2534
(1999).
[23]X. Y. Zhou, S. H. Ge, D. S. Yao, Y. L. Zuo, and Y. H.
Xiao, “Ferromagnetism of MnxLiyZn1-x-yO films,” Appl.
Surf. Sci. 254, 6428 (2008).
[24]G. Srinivasan, R. T. R. Kumar, and J. Kumar, “Li doped
and undoped ZnO nanocrystalline thin films: A
comparative study of structural and optical
properties,” J. Sol-Gel Sci. Technol. 43, 171 (2007).
[25]H. K. Yadav, K. Sreenivas, and V. Gupta, “Influence of
postdeposition annealing on the structural and optical
properties of cosputtered Mn doped ZnO thin films,” J.
Appl. Phys. 99, 083507 (2006).
[26]S. Maniv, W. D. Westwood, and E. Colombini, Pressure
and angle of incidence effects in reactive planar
magnetron sputtered ZnO layers,” J. Vac. Sci. Technol.
20, 162 (1982).
[27]P.K. Nayak, J. Jang, C. Lee, Y. Hong, “Effects of Li
doping on the performance and environmental stability
of solution processed ZnO thin film transistors,”
Appl. Phys. Lett. 95, 193503 (2009).
[28]D. Bao, H. Gu, and A. Kuang, “Sol-gel-derived c-axis
oriented ZnO thin films The Solid Films,” 312, 78
(1998).
[29]S. Amirhaghi, V. Craciun, D. Craciun, J. Elder, and I.
W. Boyd, “Low temperature growth of highly transparent
c-axis oriented ZnO thin films by pulsed laser
deposition Microelectron,” Eng. 25, 321 (1994).
[30]A. Y. Oral, Z. B. Bahsi, and M. H.
Aslan, “Microstructure and optical properties of
nanocrystalline ZnO and ZnO:(Li or Al) thin films,”
Appl. Surf. Sci. 253,4539 (2007).
[31]Y. G. Wang, S. P. Lau, H.W. Lee, S. F. Yu, B. K. Tay,
X. H. Zhang, K. Y. Tse, and H. H. Hng, “Comprehensive
study of ZnO films prepared by filtered cathodic vacuum
arc at room temperature,” J. Appl. Phys. 94, 1597
(2003).
[32]J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M.
Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum
confinement effect in ZnO thin films grown by pulsed
laser deposition,” Appl. Phys. Lett. 93, 173104 (2008).
[33]X. H. Pan, W. Guo, Z. Z. Ye, B. Liu, Y. Che, H. P. He,
and X. Q. Pand, “Optical properties of antimony-doped
p-type ZnO films fabricated by pulsed laser
deposition,” J. Appl. Phys. 105, 113516 (2009).
[34]T. Monteiro, A. J. Neves, M. C. Carmo, M. J. Soares, M.
Peres, J. Wang, E. Alves, E. Rita, and U. Wahl, “Near-
band-edge slow luminescence in nominally undoped bulk
ZnO,” J. Appl. Phys. 98, 013502 (2005).
[35]Ü. Özgür, I. Ya. Alivov, C. Liu, A. Teke, M. A.
Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H.
Morkoç, “A comprehensive review of ZnO materials and
devices,” J. Appl. Phys. 98, 041301 (2005).
[36]M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu,
L. P. Zhu, and
B. H. Zhao, “Effect of Mg content on structural,
electrical, and optical properties of Li-doped Zn1-
xMgxO thin films,” Appl. Phys. Lett. 90, 182116 (2007).
[37]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, d. y. Li, J. G. Lu, L.
P. Zhu, and B. H. Zhao, “Dopant source choice for
formation of p -type ZnO: Li acceptor,” Appl. Phys.
Lett. 88, 062107 (2006).
[38]A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de
Walle, “First-principles study of native point defects
in ZnO,” Phys. Rev. B 61, 15019 (2000).
[39]D. C. Look, “Recent advances in ZnO materials and
devices,” Mater. Sci. Eng. B 80, 383 (2001).
[40]X. Y. Duan, R. H. Yao, and Y. J. Zhao, “The mechanism
of Li, N dual-acceptor co-doped p-type ZnO,” Appl.
Phys. A: Mater. Sci. Processing. 91, 467 (2008).
[41]Y. J. Lin, C. L. Tsai, Y. M. Lu, and C. J.
Liu, “Optical and electrical properties of undoped ZnO
films,” J. Appl. Phys. 99, 093501 (2006).
[42]B. Wang, J. Min, Y. Zhao, W. Sang, and C. Wang, “The
grain boundary related p -type conductivity in ZnO
films prepared by ultrasonic spray pyrolysis,” Appl.
Phys. Lett. 94, 192101 (2009).
[43]M. Caglar, Y. Caglar, S. Aksoy, and S.
Ilican, “Temperature dependence of the optical band
gap and electrical conductivity of sol-gel derived
undoped and Li-doped ZnO films,” Appl. Surf. Sci. 256,
4966 (2010).
[44]S. Fujihara, C. Sasaki, and T. Kimura, “Effects of Li
and Mg doping on microstructure and properties of sol-
gel ZnO thin films,” J. Eur. Ceram. Soc. 21, 2109
(2001).
[45]B. Z. Dong, H. Hu, G. J. Fang, X. Z. Zhao, D. Y. Zheng,
and Y. P. Sun, “Comprehensive investigation of
structural, electrical, and optical properties for
ZnO:Al films deposited at different substrate
temperature and oxygen ambient,” J. Appl. Phys. 103,
073711 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪淑娥、吳耀宗(2008)。不同識字教學策略對學障學生識字教學之探討。特教園丁,23(4),11-18。
2. 侯雅齡(2003)。語言學習困難學生的教學策略—語言經驗法及集中識字教學的應用實例。屏師特殊教育,7,24-31。
3. 吳芝儀(1999)。從建構論觀點探討當前台灣大學生的生涯價值。輔導季刊,35(1),42-54。
4. 孟瑛如、鍾曉芬(2003)。資源班國語科注音符號教材設計原則探討。國小特殊教育,36,63-72。
5. 王淑娟(1999)。口述故事教學策略在語言治療之應用。進修學訊年刊,5,139-159。
6. 林智娟(2009)。八八風災後的教與學—以生活經驗為設計概念的實用語文教材。特教園丁,25(2),25-30。
7. 張莉珍(2004)。一個低閱讀能力兒童的策略學習方案。特殊教育季刊,90,19-24。
8. 何三本(2003)。九年一貫國語文課程及教材之研究。東師語文學刊,13,78-104。
9. 老志鈞(1990)。掌握漢字特點的識字教學方法-分析比較。中國語文通訊,1-9。
10. 冉崇屏(2002)。經驗分享-我在資源班的語文教學。國教天地,147,94-95。
11. 王瓊珠(2002)。如何與閱讀障礙孩子共讀。國小特殊教育,33,23-26。
12. 孟瑛如、張淑蘋(2003)。資源班語文教學-有趣的識字教學設計。國教世紀,
13. 張英鵬(2004)。九年一貫課程實施對身心障礙資源班經營之影響與因應策略(下)。屏師特殊教育,8,28-34。
14. 張英鵬(2003)。九年一貫課程實施對身心障礙資源班經營之影響與因應策略(上)。屏師特殊教育,7,17-23。
15. 張英鵬(2003)。多元智慧教學方案在國小身心障礙資源班之實施模式與成效實驗。屏東師院學報,18,121-154。
 
系統版面圖檔 系統版面圖檔