(3.239.33.139) 您好!臺灣時間:2021/03/08 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭荃泰
研究生(外文):Chiuan-Tai Xiao
論文名稱:低功率電荷回收可程式邏輯陣列設計與分析
論文名稱(外文):Low Power Charge Recycling PLA Design and Analysis
指導教授:魏凱城
指導教授(外文):Kai-Cheng Wei
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:積體電路設計研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:57
中文關鍵詞:動態可程式邏輯陣列高速度寄生電容電荷回收積項線端輸入線端電壓擺幅低功率
外文關鍵詞:dynamic PLAhigh speedparasitic capacitancecharge recyclingproduct-linesinput-linesvoltage swinglow power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今晶片製程的進步發展,使得數位電路設計複雜度提升,電路的電晶體數量增加,對整體功率和速度的設計要求也相對提高。數位邏輯設計能使用可程式邏輯陣列電路來實現,而靜態可程式邏輯陣列的運算速度與面積不佳,所以本論文使用動態可程式邏輯陣列電路來設計與分析,由於動態可程式邏輯陣列具有高速度及可預期繞線時間,因此常運用於高效能微處理器設計上。
當製程縮小至深次微米之時,則電路內部導線所產生的寄生電容將會比電晶體本身的寄生電容來的大,又隨著電晶體的密度增加,使導線長度成正比上升,此時電路的特性已經和以往各種電路架構所預期的不同。此篇論文討論的重點為分析先前動態可程式邏輯陣列的架構,並提出各架構的優缺點與提出我們的設計架構,我們針對可程式邏輯陣列電路的內部寄生線電容,來運用設計改良架構來完成高效能運算結果。
本論文提出主要設計為電荷回收技術,運用在可程式邏輯陣列的積項線端與輸入線端上各自寄生電容來達到效果,此回收電路能降低積項線端與輸入線端上充電和放電的電壓擺幅,因此減少功率消耗及加快運算速度,最後電路設計使用台積電0.18微米1P6M CMOS 和0.35微米2P4M CMOS技術製程,而模擬分析比較不同動態可程式邏輯陣列電路,因此本提出方法能達到低功率及高速的效能。

The chip is advancement of manufacturing process in nowadays, it to increase design complication of digital circuit, and the transistor amount to increase in circuit, the requests of the design to power and speed are comparatively higher than before, too. The digital logic design using programmable logic array (PLA) circuit to implementation, and static PLA isn’t desirable on operation speed and chip area. This thesis using dynamic PLA circuit to design and analysis, because of dynamic PLA has high speed and predictable routing delay, and therefore it become popular in designing high performance microprocessors.
In deep-submicron fabricating, the internal wire parasitic capacitance greater than transistor parasitic capacitance in the circuit, and the density increase of transistor, the wire routing length in proportion to increase, at this time, the circuit properties isn’t predictive of prior structure. Therefore, we discuss focus of analysis previous dynamic PLA structure, and presentation advantage and drawback of various structures.
This thesis proposes a method of charge recycling technology of PLA which is implemented by using the parasitic capacitance of product-lines and input-lines. This scheme can reduce voltage swing on product-lines and input-lines to decrease power consumption and speed up operation. The circuit was designed by the Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm 1P6M CMOS and 0.35-μm 2P4M CMOS technology, and analysis and compare with various dynamic PLA by simulation. Therefore, the proposed scheme can reach to low power and high speed.

CONTENTS

CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGMENTS v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES x

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Organization of the Thesis 3
CHAPTER 2 REVIEW OF DYNAMIC PLA 5
2.1 Analysis about Sources of Power Consumption 5
2.2 Conventional Clock-Delayed Dynamic PLA 6
2.3 Blair’s PLA 11
2.4 Kwang’s PLA 13
2.5 Summary 16
CHAPTER 3 THE CHARGE RECYCLING DYNAMIC PLA 17
3.1 Introduction 17
3.2 The Concept of the Charge Recycling Scheme 18
3.3 The Charge Recycling Circuit using Product-Lines of PLA.19
3.4 The Charge Recycling Circuit using Input-Lines of PLA 22
CHAPTER 4 SIMULATION RESULTS 30
4.1 Simulation Tool 30
4.2 Simulation by TSMC 0.35-μm 2P4M CMOS Technology 31
4.3 Simulation by TSMC 0.18-μm 1P6M CMOS Technology 37
4.4 Chip Layout 39
CHAPTER 5 CONCLUSION 43
REFERENCE 44

LIST OF FIGURES

Figure 1.1 The structure of a two-level dynamic PLA 2
Figure 2.1 The conventional 5×8×4 clock-delayed dynamic PLA 7
Figure 2.2 The critical path circuit of clock-delayed dynamic PLA 8
Figure 2.3 The signal propagation waveforms of clock-delayed dynamic PLA 8
Figure 2.4 The critical path circuit of Blair’s PLA 12
Figure 2.5 The signal propagation waveforms of Blair’s PLA 13
Figure 2.6 The critical path circuit of Kwang’s PLA 14
Figure 2.7 The signal propagation waveforms of Kwang’s PLA 14
Figure 3.1 The concept of charge recycling scheme 19
Figure 3.2 The critical path circuit of proposed charge recycling PLA 20
Figure 3.3 The charge recycling circuit in product-lines 20
Figure 3.4 The signal propagation waveforms of proposed charge recycling PLA 22
Figure 3.5 The charge recycling circuit of conventional PLA 23
Figure 3.6 The signal propagation waveforms of conventional PLA using charge recycling circuit 24
Figure 3.7 The conventional PLA using charge recycling circuit in input-lines 25
Figure 3.8 The charge recycling circuit of Kwang’s PLA 27
Figure 3.9 The signal propagation waveforms of Kwang’s PLA using charge recycling circuit 28
Figure 4.1 The Monte Carlo analysis method 31
Figure 4.2 The pre-simulation waveforms of proposed PLA at 100MHz clock
Frequency 33
Figure 4.3 The pre-simulation output waveforms of various PLA at 100MHz clock frequency 34
Figure 4.4 The pre-simulation waveforms of proposed PLA at 100MHz clock Frequency 38
Figure 4.5 Layout of the p82 circuit used the 0.35-μm technology 39
Figure 4.6 Layout of the propose p82 circuit used the 0.35-μm technology 40
Figure 4.7 Layout of the b12 circuit used the 0.18-μm technology 41
Figure 4.8 Layout of the propose b12 circuit used the 0.18-μm technology 41

LIST OF TABLES

Table 4.1 The parasitic capacitance values in the pre-simulation of PLA 32
Table 4.2 The speed performances of different PLA 32
Table 4.3 The pre-simulation performances comparison results of various PLA 35
Table 4.4 The post-simulation results of power consumption and delay 35
Table 4.5 The post-simulation results of power consumption and delay 36
Table 4.6 The parasitic capacitance values in the pre-simulation of PLA 37
Table 4.7 The pre-simulation results of power consumption and delay 37
Table 4.8 The post-simulation results of power consumption and delay 38
Table 4.9 The core of chip size used the 0.35-μm technology 40
Table 4.10 The core of chip size used the 0.18-μm technology 42

[1] Jinn-Shyan Wang, Ching-Rong Chang, and Chingwei Yeh, “Analysis and Design of High-Speed and Low-Power CMOS PLAs,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 8, pp. 1250-1262, Aug. 2001.

[2] Reza Molavi, Shahriar Mirabbasi, and Resve Saleh, “A High-Speed Low-Energy Dynamic PLA Using an Input-Isolation Scheme,” IEEE International Symposium on Circuit and Systems, pp. 2885-2888, Proc. of ISCAS 2006.

[3] Chua-Chin Wang, Chi-Feng Wu, Rain-Ted Hwang, and Chia-Hsiung Kao, “A Low-Power and High-Speed Dynamic PLA Circuit Configuration for Single-Clock CMOS,” IEEE Transactions on Circuit and Systems, Vol. 46, No. 7, pp. 857–861, July 1999.

[4] Tzyy-Kuen Tien, Chin-Shen Tsai, Shih-Chieh Chang, and Chingwei Yeh, “Power Minimization for Dynamic PLAs,” IEEE Transaction on VLSI Systems, Vol. 14, No. 6, pp. 616–624, June 2006.

[5] Chua-Chin Wang, Ya-Hsin Hsueh, Yu-Tsun Chien, and Ying-Pei Chen, “Design of an Inter-plane Circuit for Clocked PLAs,” IEEE International Symposium on Circuit and Systems, Vol. 14, No. 4, pp. 281-284, Proc. of ISCAS 2000.

[6] Yong-B. Dhong and C.-P. Tsang, “High Speed CMOS POS PLA using Predischarged OR Array and Charge Sharing AND Array,” IEEE Transactions on Circuit and Systems, Vol. 39, No. 8, Aug. 1992.

[7] N. Weste and K. Eshrahian, Principles of CMOS VLSI Design−A System Perspective, ed. 1, Addison-Wesley, 1985.

[8] Byung-Do Yang and Lee-Sup Kim, “A Low-Power Charge-Recycling ROM Architecture,” IEEE Transaction on VLSI Systems, Vol. 11, No. 4, pp. 590-600, Aug. 2003.

[9] Byung-Do Yang and Lee-Sup Kim, “A Low-Power ROM Using Single Charge-Sharing Capacitor and Hierarchical Bit Line,” IEEE Transaction on VLSI Systems, Vol. 14, No. 4, pp. 313-322, Apr. 2006.

[10] Byung-Do Yang and Lee-Sup Kim, “A Low-Power Charge Sharing ROM Using Dummy Bit Lines,” IEEE International Symposium on Circuit and Systems, Vol. 5, pp. 377-380, Proc. of ISCAS 2003.

[11] Muhammad-M. Khellah and Mohamed-I. Elmasry, “Low-Power Design of High-Capacitive CMOS Circuits Using a New Charge Sharing Scheme,” IEEE International Solid-State Circuits Conference, pp. 286-287, Proc. of ISSCC 1999.

[12] Keejong Kim, Hamid Mahmoodi and Kaushik Roy, “A Low-Power SRAM Using Bit-Line Charge-Recycling,” IEEE Journal of Solid-State Circuits, Vol. 43, No. 2, pp. 446-459, Feb. 2008.

[13] Ehsan Pakbaznia, Farzan Fallah and Massoud Pedram, “Sizing and Placement of Charge Recycling Transistors in MTCMOS Circuits,” IEEE/ACM International Conference on Computer-Aided Design, pp. 791-796, Proc. of ICCAD 2007.

[14] Zhiyu Liu and Volkan Kursun, “Charge Recycling Between Virtual Power and Ground Lines for Low Energy MTCMOS,” 8th International Symposium on Quality Electronic Design, pp. 239-244, Proc. of ISQED 2007.

[15] Jose-C. Garcia, Juan-A. Montiel–Nelson and Saeid Nooshabadi, “High Performance CMOS 2–Input NAND Based on Low–Race Split–Level Charge–Recycling Pass–Transistor Logic,” 12th Euromicro Conference on Digital System Design / Architectures, Methods and Tools, pp. 593-596, Proc. of DSD 2009.

[16] Z. Louis, “Compact ROM matrix,” U.S. patent US5917224, European patent EP0810665, Japan patent JP10056083.

[17] A. Bellaouar and M. I. Elmasry, Low-power digital VLSI design: Circuits and Systems. Norwood, MA: Kluwer, 1995.
[18] Gerard M. Blair, “PLA Design for Single-Clock CMOS,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 8, pp. 1211-1213, Aug. 1992.

[19] Oh J. Kwang-I1, Lee-Sup Kim, “A High Performance Low Power Dynamic PLA with Conditional Evaluation Scheme,” IEEE International Symposium on Circuit and Systems, Vol. 2, pp. 881-884, Proc. of ISCAS 2004.

[20] Muhammad Arsalan and Maitham Shams, “Review of Charge-Sharing Logic Circuits,” Canadian Conference on Electrical and Computer Engineering, Vol. 4, pp. 1919-1922, Proc. of CCECE 2004.

[21] Kee-Jong Kim, Chris H. Kim and Kaushik Roy, “TFT-LCD Application Specific Low Power SRAM Using Charge-Recycling Technique,” Sixth International Symposium on Quality of Electronic Design, pp. 59-64, Proc. of ISQED 2005.

[22] Ilias Bouras, Yiannis Liaperdos and Angela Arapoyanni, “A High Speed Low Power CMOS Clock Driver Using Charge Recycling Technique,” IEEE International Symposium on Circuits and Systems, Vol. 5, pp. 657-660, Proc. of ISCAS, May 2000.

[23] Ehsan Pakbaznia, Farzan Fallah and Massoud Pedram, “Charge Recycling in MTCMOS Circuits: Concept and Analysis,” 43rd ACM/IEEE Design Automation Conference, pp. 97-102, Proc. of DAC, July 2006.

[24] Keejong Kim, Hamid Mahmoodi and Kaushik Roy, “A Low-Power SRAM Using Bit-Line Charge-Recycling,” IEEE Journal of Solid-State Circuits, Vol. 43, No. 2, pp. 446-459, Feb. 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔