(3.238.7.202) 您好!臺灣時間:2021/03/01 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥翔
研究生(外文):Yen-Hsiang Chen
論文名稱:緩慢退後機制改良IEEE802.11p協定碰撞問題之研究
論文名稱(外文):Slow Start Backoff Mechanism for IEEE 802.11p VANETs
指導教授:鄧德雋鄧德雋引用關係
指導教授(外文):Der-Jiunn Deng
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:40
中文關鍵詞:退後演算法競爭窗口碰撞避免車載網路
外文關鍵詞:backoff algorithmcontention windowcollision avoidancevanets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,無線網路存取技術的應用快速且大量的成長。如今,電機及電子工程師學會(IEEE)把802.11p協定也稱為無線存取的車用環境(WAVE),提供專用短程傳輸(DSRC),為未來的車輛隨意網路(VANETs)。在IEEE 802.11p協定中支持智慧型的傳輸系統應用(ITS),可以適時的通知駕駛有關道路狀況、交通事故等即時訊息。然而,IEEE 802.11p協定在媒體存取控制是採用載波偵測多次存取/碰撞避免(CSMA/CA)機制,而此機制在擁擠的車輛網路環境中會產生較高的碰撞機率和長時間的存取延遲,因此我們提出緩慢開始退後(Slow start backoff)演算法來動態調整競爭窗口大小(CW size),主要是結合LILD與EIED兩種不同的方式並且針對不同種類的資料形態來減輕彼此競爭傳送媒介所產生的碰撞機率,當中透過數學的效能分析以及機率推導的過程來驗證這個方法是可行的,最後透過實驗數據顯示在大多數的車輛網路環境下,我們提出的機制勝過原先協定的方法,在資料生產量、存取延遲、碰撞機率上都有獲得明顯改善。
In recent years, the tremendous deployment and rapidly growing application of wireless access technologies. Nowadays, IEEE 802.11p protocol is also known as Wireless Accesses for the Vehicular Environment (WAVE), provides Dedicated Short Range Communication (DSRC) for future Vehicular Ad Hoc Networks (VANETs). IEEE 802.11p protocol supports Intelligent Transportation Systems (ITS) applications that inform drivers with useful information about the road condition and traffic accidents immediately. However, the protocol uses carrier sense multiple access/collision avoidance (CSMA/CA) scheme to control media access so that generate high collision probability and long average access delay in congested vehicular network. Hence, we propose a slow start backoff algorithm that dynamically adjusts contention window size to alleviate collision probability for different data types. Numerical simulation results show our proposed scheme outperform the legacy protocol scheme in most cases in VANETs.
摘要 I
Abstract II
誌謝 III
Contents IV
List of figures VI
List of tables VII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Preface 3
1.3 Related works 8
1.4 Organization 10
Chapter 2 Overview 802.11p evolution 11
Chapter 3 The Proposed Scheme 18
3.1 Proposed scheme 18
3.2 The algorithm of the proposed mechanism 19
3.3 Saturation Throughput Analysis of Slow Start Backoff Algorithm 25
3.4 Priority Enforced Slow Start Backoff Algorithm 29
Chapter 4 Performance Evaluation 30
4.1 Simulation Environment 30
4.2 Simulation Results 32
Chapter 5 Conclusions 36
Bibliography 37


List of figures
Fig. 1. Collision occur of messages 2
Fig. 2. WAVE architecture 4
Fig. 3. Channels allocation status 4
Fig. 4. Channel access process of IEEE 802.11p MAC 5
Fig. 5(a). Basic mechanism of DCF 6
Fig. 5(b). Basic mechanism of DCF 7
Fig. 6. OSI Model for IEEE 802.11p 12
Fig. 7(a). Vehicle-to-Vehicle 17
Fig. 7(b). Vehicle-to-Infrastructure 17
Fig. 8. Markov chain model of traditional backoff scheme 19
Fig. 9. Markov chain model of the EIED scheme 20
Fig. 10. Markov chain model of the LILD scheme 21
Fig. 11. Markov chain model of the proposed scheme 22
Fig. 12. State transition diagram of the proposed scheme 24
Fig. 13. Number of collision rate versus number of vehicles 32
Fig. 14. Average access delay versus number of vehicles 33
Fig. 15. Throughput versus number of vehicles 34
Fig. 16. Packet received rate versus number of vehicles 35


List of tables
Table 1. EDCA Parameters Setting 5
Table 2. Features of VANETs 11
Table 3. IEEE 802.11a compare with IEEE 802.11p 15
Table 4. Parameters of standard in different countries 16
Table 5. Notations and variables used in analytical analysis 18
Table 6. Default attributed values used in the simulation 31
[1] N. Ferreria, J. A. Fonseca, J. S. Gomes,“On the
adequacy of 802.11p MAC protocols to
support safety services in ITS,” IEEE International
conference on Emerging Technologies
and Factory Automation, 2008.
[2] http://www.cartalk2000.net/
[3] IEEE 1609.3-2007 WAVE Networking Services, 2007.
[4] IEEE 1609.4-2007 WAVE Multi-Channel Operation, 2007.
[5] H. Menouar, F. Filali, M. Lenardi, “A Survey and
Qualitative Analysis of MAC Protocols for Vehicular Ad
hoc Networks,” IEEE Communication Magazine, Special
issue Inter-Vehicle Communication, October 2006.
[6] M. T. Sun, L. Huang, A. Arora, T. H. Lai, “Reliable
MAC layer multicast in IEEE 802.11 wireless networks,”
Proc. Int. Conf. Parallel Processing, 527-536.
[7] K. Tang, M. Gerla, “MAC layer broadcast support in
802.11 wireless networks,” Proc. Int. Conf. MILCOM
2000, 544-548.
[8] K. A. Meerja, A. Shami, “A Collision Avoidance
Mechanism for IEEE 802.11e EDCA Protocol to Improve
Voice Transmissions in Wireless Local Area Networks,”
Proc. Int. Conf. Global Telecommunications 2007, 4714-
4718.
[9] Standards Committee, Wireless LAN Medium Access Control
(MAC) and Physical layer specifications: Amendment 8:
Medium Access Control Quality of Service Enhancements,
IEEE Computer Society, 2005.
[10] IEEE 802.11p/Draft 1.3,March 2005 (Draft Amendment to
STANDARD FOR In-formation technology
Telecommunications and information exchange between
systems LAN/MAN Specific Requirements, Part 11:
Wireless LAN Medium Access Control (MAC) and physical
layer (PHY) specifications: Wireless Access in
Vehicular Environments (WAVE)).
[11] E. Sichler, “Performance Evaluation of the IEEE
802.11p WAVE Communication Standard,” Proc. Int.
Conf. Vehicular Technology. 2007, 2199-2203.
[12] K. A. Meerja, A. Shami, “A Collision Avoidance
Mechanism for IEEE 802.11e EDCA Protocol to Improve
Voice Transmissions in Wireless Local Area Networks,
” Proc. Int. Conf. Global Telecommunications 2007,
4714-4718.
[13] D.J. Deng, R. S. Chang, ”A priority scheme for IEEE
802.11 DCF access method,” IEICE Trans. Commun.
1999;E82-B(1): 96-102.
[14] G. Bianchi, L. Fratta, M. Oliveri, ”Performance
Evaluation of the CSMA/CA MAC Protocol for IEEE 802.11
Wireless LANs,” Proc. PIMRC. 1996; 2:392-396.
[15] F. Cali, M. Conti, E. Gregori, “IEEE 802.11 Protocol:
Design and Performance Evaluation of Adaptive Backoff
Mechanism,” IEEE Journal on Selected Area of
Communications. 18(9):1774-1786.
[16] W. Ming, Y. L. Tao, L. C. Yi., “Capacity, collision
and interference of VANET with IEEE 802.11 MAC”,
First International Conference on Intelligent Networks
and Intelligent Systems. 2008, 251-254.
[17] Y. Wang, A. Ahmed, B. Krishnamachari, K.
Psounis, “IEEE 802.11p Performance Evaluation and
Protocol Enhancement,” Proceedings of the IEEE
International Conference on Vehicular Electronics and
Safety Columbus 2008.
[18] M. Todd, M. Tammy, C. Michael, F. Huirong, “Measuring
the Performance of IEEE 802.11p Using ns-2 Simulator
for Vehicular Networks,” Proc. Int. Conf.
Electro/Information Technology 2008, 498-503.
[19] http://sumo.sourceforge.net/, Simulation of Urban
Mobility
[20] http://hpds.ee.ncku.edu.tw/smallko/ns2/ns2.htm/, The
Network Simulator, ns-2
[21] H. Menouar, F. Filali, M. Lenardi, “A Survey and
Qualitative Analysis of MAC Protocol for Vehicular Ad
hoc Networks,” IEEE Wireless Communications. 2006; 13
(5):30-35.
[22] E. Schoch, F. Kargl, M. Weber, T.
Leinmuller, “Communication Patterns in VANETs,”
IEEE Communications Magazine. 2008; 46(22):119-125.
[23] H. Hartenstein, K. P. Laberteaux, “A Tutorial Survey
on Vehicular Ad Hoc Networks,” IEEE Communications
Maganize. 2008; 46(6):164-171.
[24] N. Song, B. Kwak, L. E. Miller, “Analysis of EIED
Backoff Algorithm for the IEEE 802.11 DCF,” IEEE
International Conference on Vehicular Technology 2005,
2182-2186.
[25] V. Bharghavan, A. Demers, S. Shenker, L.
Zhang., “MACAW: A Media Access Protocol for
Wireless LAN’s,” Proc. SIGCOMM 1994: 212-225.
[26] D. J. Deng, C. H. Ke, H. H. Chen, Y. M.
Huang. “Contention Window Optimization for IEEE
802.11 DCF Access Control,” IEEE Transactions on
Wireless Communications. 2008; 7(12):5129-5135.
[27] G. Bianchi, “Performance Analysis of the IEEE 802.11
Distributed,” IEEE Journal on Selected Area of
Communications 2000;18(3):535-547.
[28] D. J. Deng, H. C. Yen, “Quality-of-Service Provision
System for Multimedia Transmission in IEEE 802.11
Wireless LANs,” IEEE Journal on Selected Areas in
Communications. 2005; 23(6):1240-1252.
[29] M. Mauve, A. Widmer, H. Hartenstein, “A Survey on
Position-Based Routing in Mobile Ad Hoc Networks,”
IEEE Networks. 2001; 15(6):30-39.
[30] I. Stojmenovic, “Position-Based Routing in Ad Hoc
Networks,” IEEE Communications Maganize. 2002; 40
(7):128-134.
[31] C. Maihofer, “A Survey of Geocast Routing
Protocols,” IEEE Communications Surveys & Tutorials.
2004; 6(2):32-42.
[32] M. Jerbi, S. M. Senouic, T. Rasheed, Y. Ghamri
Doudane, “Towards Efficient Geographic Routing in
Urban Vehicular Networks,” IEEE Transactions on
Vehicular Technology. 2009;58(9):5048-5059.
[33] N. Wisitpongphan, O. K. Tonguz, J. S. Parikh, P.
Mudalige, F. Bai, V. Sadekar, “Broadcast Storm
Mitigation Techniques in Vehicular Ad Hoc Networks,”
IEEE Wireless Communications. 2007; 14(6):84-94.
[34] L. Deying, J. Xiohua, L. Hai, ”Energy Efficient
Broadcast Routing in Static Ad Hoc Wireless
Networks,” IEEE Transactions on Mobile Computing.
2004; 3(2):144-151.
[35] K. Nakano, S. Olariu, A. Y. Zomaya, “Energy-Efficient
Routing in the Broadcast Communication Model,” IEEE
Transactions on Parallel and Distributed Systems.
2002; 13(12): 1201-1210.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔