(3.235.11.178) 您好!臺灣時間:2021/02/26 03:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王正婷
研究生(外文):Jeng-Ting Wang
論文名稱:格狀動態系統中解的分歧研究
論文名稱(外文):Bifurcation for steady states of a lattice dynamical system
指導教授:曾旭堯曾旭堯引用關係
指導教授(外文):Shyuh-Yaur Tzeng
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:21
中文關鍵詞:格狀動態系統變分法
外文關鍵詞:FitzHugh-Nagumo systemlattice dynamical systemvariational method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
考慮格狀系統中FitzHugh-Nagumo類型的反應擴散方程。在這個系統,我們研究了不同擴散中的活化因子在沒有時間影響下的解。利用變分法(variational method),我們得到一個異質分佈式在沒有時間影響下的解。而這種非常數解 (non-constant solution) 可以被看作是從trivial solution上的分歧。
A lattice dynamical system of FitzHugh-Nagumo type is considered. In this system, we study the stationary solutions under different diffusivity for activator. Using the variational method, we obtain a heterogeneous distributed stationary solution. Such a non-constant solution can be viewed as a bifurcation from the trivial solution.
1 Introduction 3
2 Related properties for matrix A 6
3 Trignometry identities 10
4 Proof of main results 13
5 References 20
[1] M. Bode, A.W. Liehr, C.P. Schenk and H.-G. Purwins, Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component
reaction-diffusion system, Physica D 161 (2002), 45-66.
[2] C.-N. Chen and X. Hu, Stability criteria for reaction-diffusion systems with skew-gradient structure, Comm. P. D. E. 33 (2008), 189-208.
[3] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys, J. 1 (1961), 445-466.
[4] G.Klaassen and E. Mitidieri, Standing wave solutions for system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM. J. Math. Anal. 17 (1986), 74-83.
[5] S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the marine angelfish pomacanthus, Nature 376-31 (1995), 765-768.
[6] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. I. R. E. 50 (1962), 2061-2070.
[7] Y. Nishiura, Far-from-Equilibrium Dynamics, Translations of Mathematical Monographes (Iwanami Series in Modern Mathematics), Volumn 209, American Math. Soc., 2002.
[8] A.W. Panfilov and A.T. Winfree, Dynamical simulations of twisted scroll rings in three-dimensional excitable media, Physica D 17 (1985), 323-330.
[9] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equation, C.B.M.S. Reg. Conf. Series in Math. No. 65, Amer.
Math. Soc., Providence, RI, 1986.
[10] C. Reinecke and G. Sweers, A positive solution on Rn to a equations of FitzHugh-Nagumo type, J. Differential Equation 153 (1999), 292-312.
[11] X. Ren and J.Wei, Nucleation in the FitzHugh-Nagumo system: Interface-spike solutions, J. Differential Equations 209 (2005), 266-301.
[12] J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, Berlin/New York, 1994.
[13] A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B 237 (1952), 37-72.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔