(3.238.186.43) 您好!臺灣時間:2021/03/01 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊明盈
研究生(外文):YANG MING YING
論文名稱:消費者對行動商務之行為意圖研究
論文名稱(外文):The Study on Behaviroal Intention of Consumers to Use M-commerce
指導教授:張世其張世其引用關係
指導教授(外文):Chang Shih Chi
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:行銷與流通管理研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:科技接受模式知覺成本知覺娛樂知覺風險結構方程式
外文關鍵詞:TAMperceived costPerceived enjoymentperceived riskSEM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:336
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
This study proposes a research framework that integrates personal innovativeness, perceived risk, cost and enjoyment with technology acceptance model (TAM). We used the proposed model to explore antecedents of consumers’ behavioral intention to adopt M-commerce (mobile commerce).
Excluding missing answers and invalid questionnaire, 477 valid responses were collected. In addition to confirmatory factor analysis (CFA), we used structural equation modeling (SEM) to examine relationships among constructs in the proposed model. Our findings indicated that the younger group (under 30) had lower stickiness on M-commerce. Among constructs, perceived enjoyment had the most significantly influence on behavioral intention, and followed by attitude, perceived ease of use, perceived usefulness and perceived risk. Our research results could be guidance and reference to M-commerce service providers to improve and operate their services.

This study proposes a research framework that integrates personal innovativeness, perceived risk, cost and enjoyment with technology acceptance model (TAM). We used the proposed model to explore antecedents of consumers’ behavioral intention to adopt M-commerce (mobile commerce).
Excluding missing answers and invalid questionnaire, 477 valid responses were collected. In addition to confirmatory factor analysis (CFA), we used structural equation modeling (SEM) to examine relationships among constructs in the proposed model. Our findings indicated that the younger group (under 30) had lower stickiness on M-commerce. Among constructs, perceived enjoyment had the most significantly influence on behavioral intention, and followed by attitude, perceived ease of use, perceived usefulness and perceived risk. Our research results could be guidance and reference to M-commerce service providers to improve and operate their services.

Chapter 1 Introduction 1
1.1 Background 1
1.2 Research motivation 3
1.3 Research purpose 4
1.4 Research Process 5
Chapter 2 Literature Review 7
2.1 Mobile Commerce (M-commerce) 7
2.2 Technology Acceptance Model (TAM) 20
2.3 Personal Innovativeness 25
2.4 Perceived Enjoyment 27
2.5 Perceived Cost 28
2.6 Perceived Risk 30
Chapter 3 Research Methodology 37
3.1 Research Framework 37
3.2 Hypotheses 37
3.3 Operational Definitions of Variables 42
3.4 Questionnaire Design and Pilot Test 43
3.5 Subject and Data Collection 46
3.6 Analysis Method 47
Chapter 4 Data Analysis and Result 52
4.1 Sample Description 52
4.2 Reliability Analysis 58
Chapter 5 Conclusion 66
5.1 Research Finding and Discussion 66
5.2 Academic and Managerial Implication 72
5.3 Research Limitation 75
5.4 Suggestions for Future Research 76
References 77
Appendix 85

List of Figures
Figure 1.1 Research process 6
Figure 2.1 Framework for M-commerce 9
Figure 2.2 Generation of wireless mobile communications technology 13
Figure 2.3 The different types of wireless network 14
Figure 2.4 The coverage of WiMAX & Wi-Fi 15
Figure 2.5 Global customers & trend on types of communications services16
Figure 2.6 Mobile users share in Taiwan 18
Figure2.7 4G card and home sharing device 18
Figure 2.8 Technology acceptance model (TAM) 20
Figure 3.1 Research framework 37
Figure 3.2 Analysis process of SEM 49
Figure 4.1 Empirical results of proposed model 64
Figure 5.1 Forecasting ASP (average sales price) of smartphone70

List of Tables
Table 2.1 Participants in the M-commerce market9
Table 2.2 M-commerce application types and items 10
Table 2.3 Categories and items of M-commerce application 11
Table 2.4 The 13 popular M-commerce items of application in Taiwan11
Table 2.5 Fee rates and provider of WiMAX 19
Table 2.6 3G card providers and 80% discount on fee rates 19
Table 2.7 Review of empirical studies regarding TAM 22
Table 2.8 Overview of diverse constructs of perceived risk 34
Table 3.1 Operational Definitions of Variables 42
Table 3.2 Constructs and Measurement Items 43
Table 3.3 Reliability test on pilot test 46
Table 3.4 Preliminary fit criteria 50
Table 3.5 Criteria of overall model fit 50
Table 3.6 Criteria on fit of internal structural model 50
Table 4.1 Data collection 52
Table 4.2 Demographic characteristics of the respondents (n=477) 53
Table 4.3 Experience in wireless and M-commerce (n=477) 54
Table 4.4 Purposes of using M-commerce (n=477) 55
Table 4.5 Purposes of using M-commerce for 2 groups 55
Table 4.6 Preference of service toward using M-commerce (n=477) 56
Table 4.7 Preference of service toward using M-commerce for two groups57
Table 4.8 Cronbach’s α coefficient 58
Table 4.9 Factor loading of items 59
Table 4.10 Convergent validity 61
Table 4.11 Discrimination validity 61
Table 4.12 Fit indices and analysis results of the measurement model 62
Table 4.13 Fit indices and analysis results of the structural model 63
Table 4.14 Path coefficients and hypotheses test 65
Table 5.2 Direct, indirect and total effect of each construct on behavioral intention72


Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information. MIS Quarterly, 16, 227-247.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Agarwal, R., & Karahanna, E. (2001). Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage. MIS Quarterly, 24(4), 665-694.
Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personalinnovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. NJ: Prentice-Hall, Englewood Cliffs
Ba, S., & Pavlou, P. (2002). Evidence of the effect of trust building technology in electronic markets: price premiums and buyer behavior. MIQ Quarterly 26(3), 243-268.
Bagozzi, R. P., & Yi,Y. (1988). On the evaluation of structural equation models. Academic of Marketing Science, 16, 76-94.
Balasubramanian, S., Peterson, R.A., & Jarvenpaa, S.L. (2002). Exploring the implications of M-commercefor markets and marketing. Journal of the Academy of Marketing Science, 30(4), 348-336.
Bauer, R. A. (1960). Consumer behavior as risk taking. Risk Taking and Information Handling in Consumer Behavior. (Cox, Donald F. ed., pp. 23-33). Boston: Harvard Business Press.
Bentler, P. M., & Bonnett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606.
Bruner, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld internet devices. Journal of Business Research, 58(5), 553-558.
Castañeda, J. A., Muñoz-Leiva, F., & Luque, T. (2007). Web Acceptance Model (WAM): Moderating effects of user experience. Information & Management, 44(4), 384-396.
Chen, L. D., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719.
Chen, P. Y., & Hitt, L. M. (2002). Measuring switching costs and the determinants of customer retention in Internet-enabled businesses: a study of the online brokerage industry. Information Systems Research, 13, 255-274).
Chin, W. W. (1995). Partial least squares is to LISREL as principal components analysis is to common factor analysis. Technology Studies, 2, 315-319.
Cho, J. (2004). Likelihood to abort an online transaction: influences from cognitive evaluations, attitudes, and behavioral variables, Information & Management, 41(7), 827-838.
Citrin, A. V., Sprott, D. E., Silverman, S. N., & Stem, D. E. (2000). Adoption of Internet shopping: The role of consumer innovativeness. Industrial Management & Data System, 100(7), 298-300.
Clugston, M., P., H. J., & Dorfman, P. W. (2000). Dispositional Influences on Pay Preference. Journal of Business and Psychology, 15(2), 311-320.
Constantinides, E. (2002). The 4S web-marketing mix model. Electronic Commerce Research and Application, 1(1), 57-76.
Cox, D. F., & Rich, S. U. (1964). Perceived Risk and Consumer Decision- Making–The Case of Telephone Shopping. Journal of Marketing Research, 1(4), 32-39.
Cyr, D., Head, M., & Ivanov, A. (2006). Design aesthetics leading to loyalty in mobile commerce. Information & Management, 43(8), 950-963.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 12(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
Durlacher Research Report. (2001). M-commerce Durlacher Research Instituteo.
Everitt, B., Dunn, G. (2001). Applied multivariate data analysis. New York: Oxford.
Fan, Y., Saliba, A., A., E., & Newmarch, J. (2005). Speech Interface: An Enhancer to the Acceptance of M-commerce Applications. Paper presented at the The Proceedings of 4th International Conference on Mobile Business.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services Adoption: A Perceived Risk Facets Perspective. International Journal of Human-Computer Studies, 59, 451-474.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. MA: Addison-Wesley.
Fornell, C. & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18, 39-50.
Forsythe, S. M., & Shi, B. (2003). Consumer Patronage and Risk Perceptions in Internet Shopping. Journal of Business Research, 56, 867-875.
Gülçin, B. (2009). Determining the mobile commerce user requirements using an analytic approach. Computer Standards & Interfaces 31, 144-152.
Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276-286.
Hair, J. F., Anderson, R.E., Tatham, R.L., and Black, W.C. (Ed.). (1998). Multivariate data analysis (5th ed.). NJ: Prentice Hall.
Henderson, R., & Divett, M. J. (2003). Perceived usefulness, ease of use and electronic supermarket use. International Journal of Human-Computer Studies, 59(3), 383-395.
Hirschman, E. C. (1980). Innovativeness, novelty seeking, and consumer change. Journal of Consumer Research, 7, 283-295.
Hoffman, T. P., & Novak, D. L. (1996). Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60(7), 50-68.
Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.). Structural equation modeling: Concepts, issues and applications. (pp. 158-176). Thousand Oaks, CA: Sage.
Hung, S. Y., Ku, C. Y., & Chang, C. M. (2003). Critical factors of WAP services adoption: An empirical study. Electronic Commerce Research and Applications, 2(1), 46-60.
Igbaria, M., Iivari , J., & Maragahh, H. (1995). Why do individuals use computer technology? A Finnish case study. Information & Management, 29(5), 227-238.
IDC (2009). Worldwide Digital Marketplace Model and Forecast.
Im, I., Kim, Y. & Han, H. J. (2008). The effects of perceived risk and technology type on users' acceptance of technologies. Information & Management, 45, 1-9.
Jacoby, J., & Kaplan , L. B. (1972). The Components of Perceived Risk. Paper presented at the Association for Consumer Research.
Jarvenpaa, S. L., & Todd, P. A. (1996). Consumer Reactions to Electronic Shopping on the World Wide Web. International Journal of Electronic Commerce, 1(2), 59-88.
Kannan, P. K., Chang,A.M., & Whinston,A.B. (2001). Wireless Commerce: Marketing Issuesand Possibilities. Paper presented at the the 34th Annual Hawaii International Conference on System Sciences, Maui, Hawaii.
Kim G. S., Park, S. B. & Oh, J. (2008). An examination of factors influencing consumer adoption of short message service (SMS). Psychology & marketing, 25(8), 769-786.
Kuo, Y. F., & Yen, S. N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25, 103-110.
Lee, K. S., & Tan, S. J. (2003). E-retailing versus Physical Retailing: A Theoretical Model and Empirical Test of Consumer Choice. Journal of Business Research, 56, 877-885.
Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8, 130-141.
Leung, K., & Antypas, J. (2001). Improving returns on M-commerce investment. Journal of Business Strategy, 22(5), 12–14.
Liao, C. H., Tsou, T.W., & Huang, M.F. (2007). Factors influencing the usage of 3G mobile services in Taiwan. Online Information Review, 31(6), 759-774.
Liaw, S. S., & Huang, H. M. (2003). An investigation of user attitudes toward search engines as an information retrival tool. Computers in Human Behavior, 19(6), 751-765.
Littler, D., & Melanthiou, D. (2006). Consumer perceptions of risk and uncertainty and the implications for behavior towards innovative retail services: the case of Internet banking. Journal of Retailing and Consumer Services 13(6), 431-443.
Lim, N. (2003). Consumers' Perceived Risk: Sources versus Consequences. Electronic Commerce Research and Applications, 2, 216-228.
Lin, C. A. (1998). Exploring personal computer adoption dynamics. Journal of Broadcasting and Electronic Media, 42(1), 95-112.
Lin, C. A., & Jeffres, L. W. (1998). Factors influencing the adoption of multimedia cable technology. Journal and Mass Communication Quarterly, 75(2), 341-352.
Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21(6), 873-891.
Medsker, G. J., Williams, L. J., & Holahan, P. J. (1994). A review of current practices for evaluating causal models in organizational behavior and human resources management research. Journal of Management, 20, 439-464.
Mitchell, V. W., & Greatorex, M. (1993). Risk Perception and Reduction in the Purchase of Consumer Service. The Service Industries Journal, 13(4), 179-200.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information and Management, 38, 217-230.
Ngai, E. W. T., & Gunasekaran, A (2007). A review for mobile commerce research and applications. Decision Support Systems, 43, 3-15.
Nunnally, J. C. (Ed.). (1978). Psychometric theory (2nd ed.). New York: NY: McGraw-Hill.
Peter, J. P., & Ryan, M. J. (1976). An Investigation of Perceived Risk at the Brand Level. Journal of Marketing Research, 13(2), 184-488.
Peter, J. P., & Tarpey, L. X. (1975). Comparative Analysis of Three Consumers Decision Strategies. Journal of Consumer Research, 2, 29-37.
Plouffe, C. R. M., Hulland, J. S., & Vandenbosch, M. (2001). Research report: richness versus parsimony in modeling technology adoption decision—understanding merchant adoption of a smart cardbased payment system. Information Systems Research, 12(2), 208-222.
Reavley, N. (2005). Securing online banking. Card Technol Today, 17(10), 12-13.
Rogers, E. M. (1995). Diffusion of Innovations (Fourth ed.). New York: The Free Press.
Roselius, T. (1971). Consumer Rankings of Risk Reduction Methods. Journal of Marketing, 35, 56-61.
Selim, H. M. (2003). An empirical investigation of student acceptance of course websites. Computers & Education, 40(4), 343-360.
Shang, R., Chen, Y., & Shen, L. (2005). Extrinsic Versus Intrinsic Motivations for Consumers to Shop On-Line. Information and Management, 42(3), 401-413.
Shih, H. P. (2004). Extended technology acceptance model of Internet utilization behavior. Information and Management, 41(6), 719-729.
Shin, D. H. (2009). Determinants of customer acceptance of multi-service network: An implication for IP-based technologies, Information & Management, 46, 16-22.
Siau, K., Lim, E.P., & Shen,Z. (2001). Mobile Commerce:Promises,Challenges,and Research Agenda. Journal of Database Management, 12(3), 4-13.
Siau, K., Shen,Z. (2003). Mobile Communications and Mobile Services. International Journal Mobile Communications, 1, 3-14.
Simsek, Z., Veiga, J. F., Lubatkin, M. H., & Dino, R. N. (2005). Modeling the multilevel determinants of top management team bahavioral integration. Academy of Management Journal, 48(1), 69-84.
Skiba, Brian, Johnson, Mairi, Dillon, & Michael. (2000). Moving in Mobile Media Mode, http://www.entsoftware.com, Lehamn Brothers.
Song, J., Koo, C., & Kim, Y. (2007). Investigating antecedents of behavioral intentions in mobile commerce. Journal of Internet Commerce, 6(1), 13-34.
Stone, R. N., & Gronhaug, K. (1993). Perceived Risk: Further Considerations for the Marketing Discipline. European Journal of Marketing, 27(3), 39-50.
Strauss, W., & Howe, N. (1992). The History of Ameica's Future, 1584-2069. NY: Harper Perennial.
Suh, B., & Han, I. (2002). Effect of trust on customer acceptance of Internet banking. Electronic Commerce Research and Applications, 1(3), 247-263.
Tan, S. J. (1999). Strategies for reducing consumers' risk aversion in Internet shopping. Journal of Consumer Marketing, 16(2), 163-180.
Tan, M. & T. S. H. Teo, (2000). “Factors influencing the adoption of internet banking”, Journal of the Association for Information Systems, 1(5), 1-42
Tapscott, D. (1998). Growing Up Digital - The Rise of the Net Generation. New York: McGraw-Hill.
Taylor, J. W. (1974). The Role of Risk in Consumer Behavior. Journal of Marketing, 38(2), 54-60.
Teo, T. S. H., Lim, V. K. G., & Lai, R. Y. C. (1999). Intrinsic and Extrinsic Motivation in Internet Usage. Omega, 27(1), 25-37.
Teo, T. S. H. & Pok, S. H. (2003) Omega, 31(6), 483-498.
Teo, T. S. H., & Yeong, Y. D. (2003). Assessing the Consumer Decision Process in the Digital Marketplace. The International Journal of Management Science, 31, 349-363.
Van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a generic portal in the Netherlands. Information & Management, 40(6), 541-549.
Van der Heijden, H. (2004). User Acceptance of Hedonic Information Systems. MIS Quarterly, 28(4), 695-704.
Varshney, U., & Vetter , R. (2001). A Framework for the Emerging Mobile Commerce Applications. Paper presented at the Proceedings of the 34th Hawaii International Conference on System Sciences.
Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365.
Venkatraman, M. P., & Price, L. L. (1990). Differentiating between cognitive and sensory innovativeness: Concepts, measurement, and implications. Journal of Business Research 20, 293-315.
Wang, Y. S., & Liao, Y. W. (2007). The conceptualization and measurement of m-commerce user satisfaction. Computers in Human Behavior, 23, 381-398.
Webster, J., & Martocchio, J. J. (1992). Microcomputer Playfulness: Development of a Measure with Workplace Implications. MIS Quarterly, 16(2), 201-226.
Wood, S. L., & Swait, J. (2002). Psychological indicators of innovation adoption: Cross-classification based on need for cognition and need for change. Journal of Consumer Psychology, 12(1), 1-13.
Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? : An empirical evaluation of the revised technology acceptance model. Information and Management, 42(5), 719-729.
Yang, K. C. C. (2005). Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics and Informatics, 22(3), 257-277.
Young, D. (2000). Handicapping M-commerce, Wireless Review (Vol. 01 Aug.): http://wirelessreview.com/ar/wireless_handicapping_mcommerce/index.htm.
Yu, J., Ha, I., Choi, I., & Rho, J. (2005). Extending the TAM for a tcommerce. Information & Management, 42(7), 965-976.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔