跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳喻萍
論文名稱:運用混合基因演算法於生產與運輸排程問題之研究
論文名稱(外文):A heuristic for production and transportation scheduling problems
指導教授:游鵬勝游鵬勝引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:行銷與運籌研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
中文關鍵詞:單機排程到期日基因演算法
外文關鍵詞:Single Machine SchedulingDue dayGenetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在製造產業的領域中,生產排程及運送策略一直是生產管理或供應鏈管理上
的兩個重要議題。生產排程常用來決定工作順序及產能利用率,其目的是為了達
到總完工時間最小;而運送策略則透過產量運送與安排運送路線之決定以降低企
業的物流成本。過去研究大多將上述二議題分開討論。然而,一個企業通常會同
時面臨這兩個問題,因此,結合此兩問題並發展一套模式求解以達到總成本最小
化是必須的。本研究探討單機組裝排程、多點運送之生產排程及運輸配送問題,
並假設訂單為可分割至多部班機。期望透過生產排程、航空班次及運送量之決
策,以達成早到、存貨及運送等成本最小化。
Production scheduling and the transportation strategies in manufacturing systems
are two important topics in production management or supply chain management. The
production scheduling is usually used to decide what the next job will be when a work
station becomes available to reduce the total time span, while the transportation
strategies focus on the volume to be shipped between distribution channels to reduce
the logistics costs. Since beneficial these two issues are usually simultaneously faced
by a company, it is needed to develop a model to deal with the combined problem so
as to minimize the total cost. This paper deals with a production scheduling and
transportation problem with a single-machine and multi-delivery destinations.
Assuming that an order can be shipped by more than one flight, this paper develops
production scheduling and transportation strategies to minimize the cost of schedule
mismatch, inventory cost, and transportation cost.
誌謝…………………………………………………………………………………....I
摘要…………………………………………………………………………………...II
ABSTRACT………………………………………………………………………….III
目錄…………………………………………………………………………………..IV
表目錄…………………………………………………………………...…………...VI
圖目錄……………………………………………………………………..………..VII
第一章 緒論…………………………………………………………………………1
1.1 研究背景與動機…………………………………………………………...1
1.2 研究目的…………………………………………………………………...1
1.3 研究方法…………………………………………………………………...2
1.4 研究步驟與架構…………………………………………………………...2
第二章 文獻回顧……………………………………………………………………5
2.1 生產排程相關文獻………………………………………………………...5
2.2 時窗限制之車輛運輸策略相關文獻…………………………………… ..9
2.3 運具指派相關文獻…………………………………………………...…..13
第三章 問題描述與模式建構……………………………………………………..18
3.1 研究背景與動機………………………………………………………….18
3.2 基本假設………………………………………………………………….19
3.3 模式架構………………………………………………………………….19
第四章 研究方法…………………………………………………………………..23
4.1 基因演算法(Genetic Algorithms;GA)介紹……………………………...23
4.2 基因演算之基本操作…………………………………………………….25
4.3 範例………………………………………………………………………...29
第五章 數值例測試………………………………………………………………..39
5.1 數值例設計……………………………………………………………….39
5.2 數值例測試結果比較………………………………………………….…44
第六章 結論、建議與未來方向………………………………………………......63
6.1 結論…………………………………………………………………….......63
V
6.2 建議與未來方向………………………………………………………….64
參考文獻……………………………………………………………………………..65
【1】 Aldowaisan T, Allahverdi A. (1998), “Total flowtime in no-wait flowshops
with separated setup times,” Computers and Operations Research, Vol. 25(9),
pp. 757–765.
【2】 Belfiore, P. and Yoshizaki, H. T. Y. (2009), “Scatter search for a real-life
heterogeneous fleet vehicle routing problem with time windows and split
deliveries in Brazil,” European Journal of Operational Research, Vol. 199, pp.
750–758.
【3】 Bella, J. E. and McMullen, P. R. (2004), “Ant colony optimization techniques
for the vehicle routing problem,” Advanced, Engineering Informatics, Vol. 18,
pp. 41–48.
【4】 Brahimi, N., Dauzere-Peres, S. and Wolsey, L. A. (2010), “Polyhedral and
Lagrangian approaches for lot sizing with production time windows and setup
times,” Computers & Operations Research, Vol. 37, pp. 182–188.
【5】 Brandao, J. (2004), “A tabu search algorithm for the open vehicle routing
problem,” European Journal of Operational Research, Vol. 157, pp. 552–564.
【6】 Brandao, J. (2009), “A deterministic tabu search algorithm for the fleet size
and mix vehicle routing problem,” European Journal of Operational Research,
Vol. 195, pp. 716–728.
【7】 Chang, J. L., Gong, D. W. and Ma, X. P. (2007), “A Heuristic Genetic
Algorithm for No-Wait Flowshop Scheduling Problem,” Journal of China
University of Mining & Technology, Vol. 17, pp. 0582-0586.
【8】 Chen C, Neppalli R. (1996), “Genetic algorithms applied to the continuous
flow shop problem,” Computers & Industrial Engineering, Vol. 30(4), pp.
919–929.
【9】 Chen, H. K., Hsueh, C. F. and Chang, M. S. (2009), “Production scheduling
and vehicle routing with time windows for perishable food products,”
Computers & Operations Research, Vol. 36, pp. 2311–2319.
【10】Chu, F., Labadi, N. and Prins, C. (2006), “A Scatter Search for the periodic
capacitated arc routing problem,” European Journal of Operational Research,
Vol. 169, pp. 586–605.
【11】Dullaert, W., Janssens, G. K., Sorensen, K., Vernimmen, B., (2002), “New
heuristics for the fleet size and mix vehicle routing problem with time
windows,” Journal of Operational Research Society, Vol. 53, pp. 1232–1238.
【12】Fisher, M.L., Krieger, A.M. (1984), “Analysis of a linearization heuristic for
single-machine scheduling to maximize profit,” Mathematical Programming,
Vol. 28, pp. 218–225.
【13】Garcia, J. M., Lozano, S. and Canca, D. (2004) “Coordinated scheduling of
production and delivery from multiple plants,” Robotics and
Computer-Integrated Manufacturing, Vol. 20, pp. 191–198.
【14】Garcia, J. M. and Lozano S. (2005), “Production and delivery scheduling
problem with time windows,” Computers & Industrial Engineering, Vol. 48,
pp. 733–742.
【15】Gendreau, M., Hertz, A., Laporte, G., (1992) New insertion and
post-optimization procedures for the traveling salesman problem. Operations
Research 40 (6), 1086–1094.
【16】Ghoseiri, K. and Ghannadpour, S. F. (2010), “A hybrid genetic algorithm for
multi-deport homogenous locomotive assignment with time windows,”
Applied Soft Computing, Vol. 10, pp. 53-65.
【17】Ho, S. C., Haugland, D. (2004), “A tabu search heuristic for the vehicle
routing problem with time windows and split deliveries,” Computers &
Operations Research, Vol. 31, pp. 1947–1964.
【18】Hu, X. B. and Paolo, E. D. (2009), “An efficient genetic algorithm with
uniform crossover for air traffic control, “Computers & Operations Research,
Vol. 36, pp. 245–259.
【19】Kim, B. I., Kim, S. and Sahoo, S. (2006), “Waste collection vehicle routing
problem with time windows,” Computers & Operations Research, Vol. 33, pp.
3624–3642.
【20】Krajewska, M. A. and Kopfer H. (2009), “Transportation planning in freight
forwarding companies Tabu search algorithm for the integrated operational
transportation planning problem,” European Journal of Operational Research,
Vol. 197, pp. 741-751.
【21】Li, J. Q., Mirchandani P. B. and Borenstein D. (2009), “Real-time vehicle
rerouting problems with time windows,” European Journal of Operational
Research, Vol. 194, pp. 711–727.
【22】Li, K., Sivakumar, A. I. and Ganesan, V. K. (2008), “Complexities and
algorithms for synchronized scheduling of parallel machine assembly and air
transportation in consumer electronics supply chain,” European Journal of
Operational Research, Vol. 187, pp. 442–455.
【23】Liman, S.D., Panwalker, S. S., Thongmee, S. (1998), “Common due window
size and location determination in a single machine scheduling problem,”
Journal of the Operational Research Society, Vol. 49, 1007–10.
【24】Liu, F. F. and Shen S. Y. (1999), “An overview of a heuristic for vehicle
routing problem with time windows,” Computers & Industrial Engineering,
Vol. 37, pp. 331-334.
【25】Liu, J., Reeves, C.R., (2001), “Constructive and composite heuristic solutions
to the P==PCi scheduling problem,” European Journal of Operational
Research,Vol. 132, pp. 439–452.
【26】Miao, Z., Lim, A. and Ma, H. (2009), “Truck dock assignment problem with
operational time constraint within crossdocks,” European Journal of
Operational Research, Vol. 192, pp. 105-115.
【27】Mosheiov, G. and Sarig, A. (2009), “Scheduling a maintenance activity and
due-window assignment on a single machine,” Computers & Operations
Research, Vol. 36, pp.2541—2545.
【28】Naderi, B., Zandieh, M. and Shirazi, M. A. H. A. (2009), “Modeling and
scheduling a case of flexible flowshops: Total weighted tardiness
minimization,” Computers & Industrial Engineering, Vol. 57, pp. 1258-1267.
【29】Naderi, B., Zandieh, M., Khaleghi, G. B. A., and Roshanaei, V. (2008), “An
improved simulated annealing for hybrid flowshops with sequence-dependent
setup and transportation times to minimize total completion time and total
tardiness.” Expert Systems with Applications, doi:10.1016/j.eswa.2008.09.063.
【30】Naderi, B., Ruiz, R. and Zandieh, M. (2010), “Algorithms for a realistic
variant of flowshop scheduling,” Computers & Operations Research, Vol. 37,
pp. 236 – 246.
【31】Osman, I., (1993), “Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem,” In: Glover, F., Laguna, M.,
Taillard, E., Werra, D. (Eds.), Annals of Operations Research, Vol. 41. J.C.
Baltzer AG, Science Publishers, Basel–Switzerland, pp. 421–451.
【32】Pisinger, D. and Ropke, S. (2007), “A general heuristic for vehicle routing
problems,” Computers & Operations Research, Vol. 34, pp. 2403–2435.
【33】Rajendran, C., Ziegler, H., (2004), “Ant-colony algorithms for permutation
flowshop scheduling to minimize makespan/total flowtime of jobs.” European
Journal of Operational Research, Vol. 155 (2), pp. 426–438.
【34】Raut, S., Swami, S. and Gupta, J. N. D. (2008), “Scheduling a capacitated
single machine with time deteriorating jobs values,” International Journal of
Production Economics, Vol. 114, pp. 769-780.
【35】Ruiz, R., & Stutzle, T. (2007), “A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem,” European
Journal of Operational Research, Vol. 177, pp. 2033–2049.
【36】Ruiz-Torres, A. J., Ablanedo-Rosas, J. H. and Ho, J. C. (2010), “Minimizing
the number of tardy jobs in the flowshop problem with operation and resource
flexibility,” Computers & Operations Research, Vol. 37, pp. 282-291.
【37】Russell, R. A. and Chiang, W. C. (2006), “Scatter search for the vehicle
routing problem with time windows,” European Journal of Operational
Research, Vol. 169, pp. 606–622.
【38】Sadegheih, A. (2007), “Sequence optimization and design of allocation using
GA and SA,” Applied Mathematics and Computation, Vol. 186, pp.
1723–1730.
【39】Sariklis, D., Powell, S., (2000), “A heuristic method for the open vehicle
routing problem,” Journal of the Operational Research Society, Vol. 51, pp.
564–573.
【40】Solomon, M., (1987), “Algorithm for the vehicle routing and scheduling
problem with time window constrain,” Operations Research, Vol. 35, pp.
254-265.
【41】Syswerda, G. (1989), “Uniform crossover in genetic algorithms,” Proceedings
of the third international conference on genetic algorithms and their
applications, San Mateo, CA: Morgan Kaufmann, 2-9.
【42】Taillard, E. (1993), “Parallel iterative search methods for the vehicle routing
problems,” Networks, Vol. 23, pp. 661–673.
【43】Tang, J., Zhang, J. and Pan, Z. (2010), “A Scatter Search Algorithm for
Solving Vehicle Routing Problem with Loading Cost,” Expert Systems with
Applications, Vol. 37, pp. 4073-4083.
【44】Tang L. and Liu P. (2009), “Flowshop scheduling problems with
transportation or deterioration between the batching and single machines,”
Computers & Industrial Engineering, Vol.56, pp.1289–1295.
【45】Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G. (2007), “A particle
swarm optimization algorithm for makespan and total flowtime minimization
in the permutation flowshop sequencing problem.” European Journal of
Operational Research, Vol. 177, pp. 1930–1947.
【46】Tavakkoli-Moghaddam, R., Javadian, N., Khorrami, A. and Gholipour-Kanani
Y. (2010), “Design of a scatter method for a novel multi-criteria group
scheduling problem in a cellular manufacturing system,” Expert Systems with
Applications, Vol. 37, pp. 2661-2669.
【47】Tseng, L. Y. and Lin, Y. T. (2009), “A hybrid genetic local search algorithm
for the permutation flowshop scheduling problem,” European Journal of
Operational Research, Vol. 198, pp.84–92.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊