跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:RungtipNgaklunchon
論文名稱:小胡瓜遺傳岐異度與代表品種抗氧化酵素活性之分析
論文名稱(外文):Genetic Diversity of Cucumber (Cucumis sativus L.) Collections and the Antioxidant Enzyme Activities in Selected Varieties
指導教授:紀海珊
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:園藝學系研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
畢業學年度:98
語文別:中文
中文關鍵詞:Antioxisant enzyme activitiesheat stressyieldcorrelaiton coefficientpath coefficient analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本試驗選取34 個不同地區育成之小黃瓜品種,以逢機完全區集設計、兩重複,於 2008 年12 月至 2009 年 4 月間,同時種植於高雄區農業改良場旗南分場網室中。試驗首先比較各品種於網室栽培下之園藝性狀,包括株高、葉長、葉寬、節數、分枝數、莖寬、雌花始花期、雌花始花節數、雄花始花期、雄花始花節數、每株雄花數、每株果實數、每株合格果實數、果長、果寬、果重、具市場價值產量及網產量等 18 個特性。 以相關性分析 (correlation analysis) 與主成分分析 (component analysis) 探討性狀間之相關性,進一步一以路徑分析 (part coefficient analysis) 探討何者對小黃瓜之產量影響最大。結果顯示果長、果重、葉寬、葉長,果寬及每株合格果實數與產量達極顯著正相關; 莖寬及每株果實數與產量也有顯著正相關。反之,節數則與產量呈現極顯著負相關,此外與分枝數、雌花始花節數、及株高則與產量有負相關的趨勢。此結果與路徑分析結果相似。將各性狀以主成分分析分成三個主成分 (factors),第一主成分累貢積貢獻度為 34.02%,可歸納為產量相關性狀;第二主成分累積貢獻度為 57.23%,可歸納為花果數目相關性狀;第三主成分累積貢獻度為 66.50%,可歸納為株高相關性狀。進一步依上述調查性狀之相關程度,將 34 個品種進行分群分析,結果以性狀歧異度 40% 為標準,可將所有品種區分為四大群,此分群結果與主成分分析散佈圖分群結果相符合。
本論文進一步從上述 34 個品種中,篩選出來自Taiwan、一色列、日本、及泰國四個不同地區育成之小黃瓜品種,種植於高溫網室環境下,探討高溫逆境與抗氧化酵素之相關性。本研究比較不同品種於營養生長期與開花期於一天中清晨 6 時 30 分 (未經高溫處理組) 與午後 2 時左右 (高溫處理組) 葉片中 guaiacol peroxidase (G-POD) 、ascorbate peroxidase (A-POD) 及 catalase (CAT) 三種抗氧化酵素之活性變化。試驗結果顯示來自泰國的品種 (Treasure) 於高溫網室中栽培之果實產量顯著高於其他三個品種,將其歸類為高溫耐受型,其他三者歸為高溫敏感型。進一步分析顯示高溫耐受型之、Treasure、於開花其經 38-40°C 高溫環境四小時後,葉片中 G-POD、A-POD 及 CAT 三種抗氧化酵素活性均顯著提高,反之,於高溫敏感型的小黃瓜品種均未呈現此酵素活性提高之現象,此結果顯示抗氧化酵素活性與高溫逆境耐受性有密切相關,可作為小黃瓜抗高溫逆境育種選拔之輔助篩選依據,甚值得進一步探討。

Correlation among growth, yield and quality attributes in cucumber (Cucumis sativus L.) was estimated through a field study with a randomized complete block design (RCBD). Thirty-four varieties of cucumber were evaluated and eighteen growth and morphological traits including plant height, leaf length, leaf width, number, branch number, stem width, plant height, number of node, stem width, number of branch, leaf length, leaf width, days of 1st female opening, node of 1st female opening, days of 1st male opening, node of 1st male opening, total flower number, total fruit number, total number of marketable fruit, fruit length, fruit width, fruit weight, marketable yield and total fruit yield were investigated at Chi-nan Branch Station, Kaohsiung District Agricultural Research and Extension Station (KDARES) Kaohsiung, Taiwan, between Decembers 2008 to April 2009.Genetic variability is needed for selection in breeding program and generally selection is aimed at improving some morphological characters. They may contribute significantly to plant final yield and should be considered as indicators, just as reproductive characteristics, for selection to improve yield in breeding program. With correlation, path coefficient analysis and factor analysis the results suggested that characters including leaf length, leaf width, total fruit number, fruit length, fruit width and fruit weight are effective indicators to final yield and breeders could pay attention to these characters in breeding projects. Further according to the extent of the survey related traits, will be 34 varieties of cluster analysis results to genetic distant 40% of diversity criteria, all varieties can be divided into four groups, were strongly associated with leaf length, leaf width, fruit length, fruits weight, and there were close similarity in their general topology compared with the principal component analysis of all traits to be divided into three principal components (factors), the first principal component plot cumulative contribution tribute to 34.02%, can be summarized as yield-related traits; cumulative contribution of the second principal component was 57.23%, can be summarized as the number of flower and fruit related traits; cumulative contribution of the third principal component was 66.50%, can be summarized as plant height related traits. The results of this clustering and principal component analysis scatter plot of clustering results are consistent. The multivariate analysis clearly showed that there was wide variation among tested thirty-four varieties in these important characteristics.
From thirty-four cucumber varieties four from different group were selected for further study on the antioxidant enzyme activity under high temperature, four cucumber varieties are ‘Merry Swallow’, ‘FIVOS’, ‘Drawer ground frost’ and ‘Treasure’. Three antioxidant enzyme activities, guaiacol peroxidase (G-POD), ascorbate peroxidase (A-POD) and catalase (CAT) were further determined at vegetative and reproductive stage under heat stress. The results showed that ‘Treasure’ had the highest fruit production than others grown in net-house in Kaohsiung, Taiwan. We grouped ‘Treasure’ into heat-tolerant line, the other three cultivars into heat-sensitive lines. Besides, we found the G-POD, A-POD, and CAT activities increased significantly after exposure to high temperature especially at reproductive stage in ‘Treasure’. This phenomenon can not show in heat-sensitive varieties. It suggested that antioxidant enzyme activities would be closely related to heat stress tolerance. They are probably reliable indicators for heat tolerance to be useful in cucumber breeding.

Contents

ACKNOWLEDGEMENT……………………………………… I
ENGLISH ABSTRACT……………………………………… II
CHINESE ABSTRACT……………………………………… IV
CONTENTS………………………………………………… V
LIST OF TABLES………………………………………… VII
LIST OF FIGURES………………………………………… VIII
Chapter I. Introduction………………………………1
Literature cited……………………………5
Chapter II. Literature Review…………………8
2.1 Description of the yield improvement for cucumber ………… 8
2.2 Genetic diversity of cucumber ……………………………… 8
2.3 Correlations among growth, yield and quality characters........ 9
2.4 Environmental conditions of cucumber growth……………… 10
2.5 Oxidative stress and reactive oxygen species………………… 11
2.6 Antioxidants in cucumber plants ………… 11
Literature cited……………………………………… 14
Chapter III. Correlation and path analyses among morphological characters in
Cucumber (Cucumis sativus L.)…………………… 17
Abstract……………………………………………………… 17
Introduction………………………………………………… 18
Material and Method………………………………………… 20
Plant material and environment……………………… 20
Plant morphological characters investigated…… 21
Statistical analysis ………………………………… 22
Result…………………………………………………………… 23
Discussion…………………………………………………… 27
Literature cited……………………………………………… 50
Chapter IV. Change of antioxidant enzyme activities during heat stress in Cucumber (Cucumis sativus L.)…… 54
Abstract……………………………………………………… 54
Introduction………………………………………………… 55
Material and Method………………………………………… 58
Plant material and environment……………………… 58
Plant morphological characters measured…………… 59
Experimental method method…………………………… 60
Statistical analysis …………………………………… 62
Result……………………………………………………… 63
Discussion………………………………………………… 65
Literature cited…………………………………………… 74

Alscher, R. G., N. Erturk and L.S. Heath. 2002. Role of superoxide dismutases (SOD) in controlling oxidative stress in plants. J. Plant Biol. 53: 1331-1341.
Bramlage, W. J. and S. A. Weis. 1997. Effects of temperature, light, and rainfall on superficial scald susceptibility in apples. Hort.Sci. 35: 808–811.
Cantliffe, D.J., N.L. Shaw, and P.J. Stoffella. 2007. Current trends in cucurbit production in the U.S. Acta Horticulturae. 731: 473-478.
Galun, E. 1961. Study of the inheritance of sex expression in the cucumber the interaction of major genes with modifying genetic and non genetic factors. Genetica. 32: 134-163.
Grosset, D. R., E. P. Millhollon and M. C. Lucas. 1994. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci. 34: 7061-7064.
Henry, A. and G. V. Krishna, 1990. Correlation and path coefficient analysis in pigeon pea. Madras Agric. J. 77(9-12):443-446.
Herbette, S., C. Lenne, N. Leblanc, J. L. Julien, J. R. Drevet, J. Roeckel and P. Drevet. 2002. Two GPX like proteins from Lycopersicon esculentum and Helianthu annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur. J. Biochem. 269: 2414-2420.
Hochmuth, G.J. 1992. Fertilizer management for drip irrigated vegetables in Florida. Hort.Tech. 2: 27-32.
Iwahori, S., J.M. Lyons, and O.E. Smith. 1970. Sex expression in cucumber plants as affected by 2-chloroethylphosphonic acid, ethylene, and growth regulators. Plant Physiol. 46: 412-415.
Lichtenthaler, H. K. 1996. Vegetation stresses an introduction to the stress concept in plants. Plant Physiol. 148: 4-14.
Lin, C. C. and C. H. Kao. 2002. Osmotic stress induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth Regul. 37: 177-183.
Raupach, G.S., and J.W. Kloepper. 2000. Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Disease. 84: 1073-1075.
Sasmita, D. and N. Mohanty. 2002. Response of seedlings to heat stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity.
Plant Physiol. 159:49 – 59.
Saito, S., N. Fujii, Y. Miyazawa, S. Yamasaki, S. Matsuura, H. Mizusawa, Y. Fujita, and H. Takahashi. 2007. Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. J. Exp. Bot. 58: 2897-2907.
Schultheis, J.R. 2000. Fresh market production cucumbers. North Carolina Cooperative Extension Service. Horticulture Information Leaflet 14.
Shiffis, O. 1961. Sex control in cucumbers. J. Heredity. 52: 5-12.
Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda and Y. Yabuta. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.
Simsek, M. T. Tonkaz, M. Kacira, N. Comlekcioglu, and Z. Dogan. 2004. The effects of different irrigation regimes on cucumber (Cucumis sativus L.) yield and yield characteristics under open field conditions. Agric.Water Manag. 73: 173-191.

Staub, J.E., S.M. Chung, and Fazio, G. 2005. Conformity and genetic relatedness estimation in crop species having a narrow genetic base: The case of cucumber (Cucumis sativus L.). Plant Breed. 124: 44-53.
Taub, D. R., R. Jeeferey, S. Seemann, and J. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high temperature damage. Plant Cell Environ. 23: 649–656.
U.S. Dept. of Agriculture. 2000. Americans relish cucumbers. USDA, Economic Research Service. Dec.
www.ers.usda.gov/publications/agoutlook/dec2000/ao277d.pdf
Vaidyanathan, H., P. Sivakumar, R. Chakrabarty and G. Thomas. 2003. Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.) differential response in salt tolerant and sensitive varieties. Plant Sci. 165: 1411- 1418.
Wein, H.C. 1997. The cucurbits: cucumbers, melon, squash, pumpkin. pp. 345-386. In: The physiology of vegetable crops, H.C. Wein (ed.). Cab International, New York, NY.
Wehner, T.C., and N. Guner. 2004. Growth stage, flowering pattern, yield and harvest date prediction of four types of cucumber tested at 10 planting dates. Acta Hort. 637: 223-229.
Alscher, R. U., N. Erturk and L. S. Heath. 2002. Role of superoxide in controlling oxidative stress in plants. J. Exp. Bot. 53:13 dismutases 31-1341.
Anderson, M. D., T. K. Prasad, and C. R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione-reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257.
Bolwell, G. P., L.V. Bindschedler and K. A. Blee. 2002. The apoplastic oxidative burst in response to biotic stress in plants. J. Exp. Bot. 53:1367-1376.
Cramer, C. S. and T. C. Wehner. 1999. Little heterosis for yield and yield components in hybrids of six cucumber inbreds. Euphytica 110:99–108.
Desikan, R., J. Hancock and S. Neill. 2005. Reactive oxygen species as signaling molecules. Antioxidants and Reactive Oxygen Species in Plants. pp. 169-196. Blackwell Publishing. UK.

Foyer, C. H., H. Lopez-Delgado, J. F. Dat and I. M. Scott. 1997. Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Plant Physiol. 100: 241-254.
Garcia, L., M. Jamilena, J. I. Alvarez, T. Arnedo, J. L. Oliver and R. Lozano. 1998. Genetic relationship among melon breeding lines revealed by RAPD markers and agronomic traits. Theor. Appl. Genet. 96, 878–885.
Gechev, T. S., F. Van Breusegem, J. M. Stone, I. Denev and C. Laloi. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28: 1091- 1101.
Gwanama, C., M. T. Labuschange and A. M. Botha. 2000. Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica 113, 19–24.
Levi, A., C. E. Thomas, A. P. Keinath and T. C. Wehner. 2001. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet. Res. Crop Evol. 48, 556–559.

Hendrickson, L., M. C. Ball, J. T. Wood, W. S. Chow and R.T. Furbank 2004. Low temperature effects on photosynthesis and growth of grapevine. Plant. Cell. Environ. 27: 795-809.
Horejsi, T. and J. E. Staub. 1999. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet. Res. Crop Evol. 46, 337–350.
Lee, S. H., A. P. Singh and G.C. Chung. 2004. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J. Exp. Bot. 55: 1733-1741.
Munro, K.D., D. M. Hodges, J. M. Long, C. F. Forney and D.N. Kristie. 2004. Low temperature effects on ubiquinone content, respiration rates and lipid peroxidation levels of etiolated seedlings of two differentially chilling-sensitive species. Plant Physiol. 121: 488-497.
Meng, X. D., Y. Y. Wei, H. Ma, W. H. Zhang and J. R. Li. 1996. Identification of Chinese wax gourd and chieh-qua cultivars using RAPD markers. Acta Agr. Shanghai 12, 45–49.
Nerson, H. and H.S. Paris.2000. Relationship between fruit size and seed size in cucurbits. Cucurbit Genetics Coop. Rept. 23:64-67.
Perin, C., C. Dogimont, N. Giovinazzo, D. Besombes, L. Guitton, L. Hogen and M. Pitrat. 1999. Genetic control and linkages of some fruit characters in melons. Cucurbit Genetics Coop. Rept. 22:16-18.
Pitrat, M. 1991. Linkage groups in Cucumis melo L. J. Heredity 82:406-411.
Streb, P., A. Michaelknauf and J. Feierabend .1993. Preferential photo- inactivation of catalase and photoinhibition of photosystem-II are common early symptoms under various osmotic and chemical stress conditions. Physiologia Plantarum. 88:590-598.
Sureja, A. K., P. S. Sirohi, T. K. Behera and T. Mohapatra. 2006. Molecular diversity and its relationship with hybrid performance and heterosis in ash gourd [Benincasa hispida (Thunb.) Cogn.] J. Hortic. Sci. Biotechnol. 81 (1), 33–38.
Taub, D.R., R. Jeeferey, Seemann and James S. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant. Cell. Environ. 23, 649–656.
Taha, M., Omara, K. and Jack, A. E. 2003. Correlation among Growth, Yield, and Quality Characters in Cucumis melo L. Cucurbit.Genet. Coop. Rep., 26: 9-11.
Vijay, O.P. 1987. Genetic variability, correlation, and path-analysis in muskmelon (Cucumis melo L.). Indian J. Hort. 44:233-238.
Whitaker, T.W. and G.N. Davis. 1962. Cucurbits. Interscience Publishers Inc., New York.
1Hhttp://faostat.fao.org (2010/07/05)

Adam, D. J. and T. G. Hwang. 1999. Prediction intervals, factor analysis models and high dimensional empirical linear prediction. Sociol. Theor. Methods. 94: 446-455.
Ariyo, O. J. and A. Odulaja. 1991. Numerical analysis of variation among
accession of okra (Abelmoschus esculentus (L.) Moench) Malvaceae.
Ann. Bot. 67: 527-531.
Cramer, C. S. and T. C. Whener. 1998. Fruit yield and yield component means and correlations of four slicing cucumber populations improved through six to ten cycles of recurrent selection. J. Am. Soc. Hort. Sci. 123: 388-395.
Dewey, D. R. and K. H. Lu. 1959. A correlation and path coefficient analysis of components of crested wheat grass seed production. Agron J. 51: 515-518.
Fakorede, M. A. B. and B. O. Opeke. 1985. Whether a factor affecting the response of maize to planting dates in a tropical rainforest location.
Exp. Agric. 21: 31-40.
Fazio, G. 2001. Comparative study of marker-assisted and phenotypic selection and genetic analysis of yield components in cucumber. Ph. D. dissertation, University of Wisconsin, Madison. USA.
George, R. A. T. 1985. Vegetable seed production. Pitman Press, Bath, U.K
Hamid, A., J. D. Bloch and K. Naeemullah. 2002. Performance studies on
six cucumber genotypes under local conditions of Swat. Intl. J. Agric.
Biol. 4: 491–2
Henry, A. and G. V. Krishna, 1990. Correlation and path coefficient analysis in pigeon pea. Madras Agric. J. 77(9-12): 443-446.
Islam, M. S., S. Khan, D. Khanem, A. Malex and M. M. Hoque. 1993. Genetic variability and path analysis in cucumber (Cucumis sativus L.). Bangladesh J. Genet. Plant. Breed. 6:45 -51.

Johnson, R. A. and D. W. Wicherin. 1992, Applied multivariate statistical analysis, 3rd Ed, Prentice Hall Inc. Englewood Cliffs, London, UK.
Jolliffe, I. and T. J. Ringrose. 1998. Canonical correspondence analysis. In S. Kontz and N. L. Johnson eds. Willey, Encyclopedia of Statistical Sciences, 91-97.
Kalloo, J., J. Dixit and A. S. Sidhu. 1983. Studies on genetic variability and characters association in muskmelon (Cucumis melo L.). Indian J. Hort. 40:79-85.
Kaul, T., G. Lal and K. V. Peter. 1978. Correlation and path coefficient analysis of components of earliness, pod yield and seed yield in okra. Indian J. Agric. Sci. 48(8): 459-63.
Lal, T. and S. Singh. 1997. Genetic variability and selection indices in melon (Cucumis melo L.). Veg. Sci. 24:111-117.
Lower, R.L. and M. D. Edwards. 1986. Cucumber breeding. In: M. J. Basset, ed., Breeding Vegetable Crops. AVI Publishing Co., Westport, Connecticut, pp. 173-207.
Malik, M. F. A. 2002. Genetic variation, correlation and path analysis studies on different genotypes of soybean based on morphological traits. M.Phil. Thesis. Quaid-i-Azam University, Islamabad.
Pandey, S., M. Rai, D. Ram, B. Singh and P. K. Chaubey. 2003. Component analysis in snapmelon (Cucumis melo var. momordica). Veg. Sci. 30:64-67.
Ramirez, D. R., T. C. Wehner and C. H. Miller. 1988. Growth analysis and correlation studies in three cucumbers lines differing in plant habit. Hort. Sci. 23(1): 145 -148.
Sambamurthy, J.S.V. and B. Rama Rao. 1998. Genetic variability and
association analysis in parents and hybrids of American cotton. J.
Cotton Res. Dev. 12: 236-241.
Saha, R. R., B. N. Mitra, A. E. Hossain, M. Jamaluddin and A. M. M. Mosiul Hoque. 1992. Genetic variability, character association and path coefficient analysis in pumpkin (Cucurbita moschata L.). Bangladesh Hort. 20(1) 59-62.
Singh, R. K. and B. D. Chaudhry. 1979. Biometrical methods in quantitative genetic analysis. Kelyani publishers, New Dehli, India, pp, 303.
Singh, V. P. K. Singh and R. C. Jaiswal. 1986. Genetic variability and correlation studies in pointed gourd. Narendra Deva J. Agric. Res. 1(2) 120-124.
Singh, D. and K. S. Nandpuri. 1975. A note on correlation studies in muskmelon. J. Res. P.A.U. 12:252-257.
Sharma, S. C., A. K. Goel, K. Rajiner and R. Kumar. 2000. Performance of
cucumber cultivar under protected cultivation. Himachal. J. Agric.
Res., 26: 175–7
Smith, O. S., R. L. Lower and R. H. Moll. 1978. Estimates of heritabilities and variance components in pickling cucumbers. J. Am. Soc. Hortic. Sci. 103: 222-225.
Staub, J. E., S. M. Chung and G. Fazio. 2005. Conformity and genetic relatedness estimation in crop species having a narrow genetic base: The case of cucumber (Cucumis sativus L.). Plant Breed. 124: 44-53.
Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics.
A Biometrical Approach 2 nd ed. McGraw Hill Book Co.
Inc. New York, USA.
Tatlioglu, T. 1993. Cucumber Cucumis sativus L. In: G. Kalloo and B.O. Bergh, eds., Genetic Improvement of Vegetable Crops. Pergamon Press Ltd., Tarrytown, New York, pp. 197-234.
Vijay, O. P. 1987. Genetic variability correlation and path analysis in muskmelon (Cucumis melo L.). Indian J. Hort. 44:233-238.
Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.
Alscher, R. G., N. Erturk and L.S. Heath. 2002. Role of superoxide dismutases (SOD) in controlling oxidative stress in plants. J. Plant Biol. 53: 1331-1341.
Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396.
Bramlage, W. J. and S. A. Weis. 1997. Effects of temperature, light, and rainfall on superficial scald susceptibility in apples. Hort.Sci. 35: 808–811.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254.
Carrow, R.N. 1996. Drought avoidance characteristics of diverse tall fescue cultivars. Crop Sci. 36: 371-377.
Cantliffe, D.J., N.L. Shaw, and P.J. Stoffella. 2007. Current trends in cucurbit production in the U.S. Acta Horticulturae. 731: 473-478.
Dat, J. F., H. Lopez-Delgado, C. H. Foyer, and I. M. Scott. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116: 1351-1357.
Foyer, C. H., H. Lopez-Delgado, J. F. Dat and I. M. Scott. 1997. Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Plant Physiol. 100: 241-254.
Gómez, J. M., A. Jiménez, E. Olmos and F. Sevilla. 2004. Location and effects on long term NaCl on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J. Exp. Bot. 55: 119-130.
Grosset, D. R., E. P. Millhollon and M. C. Lucas. 1994. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci. 34: 7061-7064.
Herbette, S., C. Lenne, N. Leblanc, J. L. Julien, J. R. Drevet, J. Roeckel and P. Drevet. 2002. Two GPX like proteins from Lycopersicon esculentum and Helianthu annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur. J. Biochem. 269: 2414-2420.
Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Linden and D. Xiaosu. 2001. The scientific basis contribution of working group first to third assessment report of the intergovernmental panel on climate change. Cambridge University, UK.
Huang, B. and H. Gao. 1999. Physiological responses of diverse tall fescue cultivars to drought stress. J. Hort. Sci. 34: 897-901.
Jiang, Y. W. and B. G. Huang. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J. Exp. Bot. 52:341–349
Kang, H. M., K. W. Park and M. E. Saltveit. 2002. Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse grown cucumber (Cucumis sativus L.) fruit. Postharvest. Biol. Tec. 24: 49–57.
Kwon, S. Y., Y. J. Jeong, H. S. Lee, J. S. Kim, K. Y. Cho, R. D. Allen and S. S. Kwak. 2002. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl vilogen mediated oxidative stress. Plant Cell Environ. 25: 873-882.
Lichtenthaler, H. K. 1996. Vegetation stresses an introduction to the stress concept in plants. Plant Physiol. 148: 4-14.
Lin, C. C. and C. H. Kao. 2002. Osmotic stress induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Growth Regul. 37: 177-183.
Luck, H. 1974. Catalases. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis. Vol.2. Academic Press, New York.
Massacci, A., M. A. Iannelli, F. Pietrini and F. Loreto. 1995. The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photo protection of maize leaves. J. Exp. Bot. 46: 119-127.
Peet, M. and D. H. Willits. 1998. The effect of night temperature on greenhouse grown tomato yields in warm climate. Forest Meteor. 92: 191-202.
Putter, J. 1974. Peroxidases. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis. Vol.2. Academic Press, New York, pp. 685-690.
Rivero, R. M., J. M. Ruiz and L. Romero. 2004. Oxidative metabolism in tomato plants subjected to heat stress. Hort. Sci. Biotechnol. 79: 560-564.
Saltveit, M. E. 2001. Chilling injury is reduced in cucumber and rice seedlings and in tomato pericarp discs by heat-shocks applied after chilling. Postharv. Biol. Technol. 21: 169–177.
Scandalios, J. G., A. Acevedo and S. Ruzsa. 2000. Catalase gene expression in response to chronic high temperature stress in maize. Plant Sci. 156:103–110
Srivalli, B., C. Vishanathan and K.C. Renu. 2003. Antioxidant defense in response to abiotic stresses in plants. J. Plant Biol. 30: 121–139.
Sasmita, D. and N. Mohanty. 2002. Response of seedlings to heat stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity.
Plant Physiol. 159:49 – 59.
Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda and Y. Yabuta. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.
Taub, D. R., R. Jeeferey, S. Seemann, and J. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high temperature damage. Plant Cell Environ. 23: 649–656.
U.S. Dept. of Agriculture. 2000. Americans relish cucumbers. USDA, Economic Research Service. Dec.
www.ers.usda.gov/publications/agoutlook/dec2000/ao277d.pdf
Vaidyanathan, H., P. Sivakumar, R. Chakrabarty and G. Thomas. 2003. Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.) differential response in salt tolerant and sensitive varieties. Plant Sci. 165: 1411- 1418.
Ye, L. A., H. Y. Gao and Q. Zou. 2000. Responses of antioxidant systems and xanthophylls cycle in Phaseolus vulgaris to combined stress of high irradiance and high temperature. Photosynthetica 38:205–210
Zhu, C., G. W. Zeng and F. Y. Liu. 1996. Effect of epibrassinolide on the heat shock tolerance and antioxidant metabolism in cucumber seedling. J. Zhejiang Agric. Univ. 22: 284–288.








連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文