跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅嘉翎
研究生(外文):Lo, Chia-Ling
論文名稱:銀奈米粒子上沉積隔絕層增強拉曼散射之研究
論文名稱(外文):Study of enhanced Raman scattering through an isolating layer depositing on silver nanoparticles
指導教授:蔡明善
指導教授(外文):Tsai, Ming-Shang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:光電暨固態電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:銀奈米粒子表面增強拉曼散射侷域性表面電漿隔絕層氧化矽
外文關鍵詞:silver nanoparticlesurface enhanced Raman scatteringSERSlocalized surface plasmonsLSPsisolating layerSiOxgold
相關次數:
  • 被引用被引用:1
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文主要是探討銀奈米粒子(silver nanoparticle)對表面增強拉曼散射(surface enhanced Raman scattering, SERS)的影響。一般對於SERS有兩種解釋:物理性增益(Physical Enhancement)及化學性增益(Chemical Enhancement)。銀奈米粒子在受入射光電場作用下,表面自由電子因集體產生震盪而有增強性共振產生,此稱為侷域性表面電漿(localized surface plasmons, LSPs)。因此本論文主要探討物理性增益,即銀奈米粒子在不同隔絕層(isolating layer)之下對於SERS的影響。
  我們使用的隔絕層分為兩類,一為導體的金(gold)作為隔絕層;另一為絕緣體的氧化矽(SiOx):
  當使用金作為隔絕層時,拉曼訊號完全被阻絕,我們推測因金屬屏蔽效應使得侷域性電場(localized eletric field)降低;而當隔絕層材料為氧化矽時,染料分子的拉曼訊號會隨氧化矽厚度不同而有增強、進而衰減的現象:我們發現當氧化矽隔絕層的厚度為10nm時,拉曼訊號達到最大值,相較於無氧化矽的銀奈米粒子訊號強度大約增強40%;而氧化矽厚度到達40nm,拉曼訊號開始下降;到達60nm時持續下降,但至此訊號仍比無氧化矽的銀奈米粒子之拉曼訊號來得強。最後當氧化矽厚度為70nm時拉曼訊號則完全消失。此現象顯示,即使銀奈米粒子和染料分子之間並無直接接觸,甚至有絕緣體層隔絕,其拉曼訊號不減反增,氧化矽隔絕層最大厚度可以到60nm左右。經由場發射掃描式電子顯微鏡(scanning electron microscopy, SEM)的觀察,我們發現一個非常有趣的現象:利用熱蒸鍍將氧化矽沉積在銀奈米粒子表面時,氧化矽的行為類似自組裝(self-assembly)使得銀奈米粒子在經過熱蒸鍍氧化矽後,其大小、形狀由原本的不規則變得更為均勻,氧化矽並非均勻蒸鍍附著在整個薄膜表面,而是類似以銀奈米粒子作為核心包覆成長,因此可推測以氧化矽作為隔絕層時,奈米粒子的形狀經過修飾,並因包覆使體積變大而在奈米粒子之間形成明顯溝槽使染料分子更容易陷入、附著;我們猜測其修飾後的形狀也造成較大或較均勻的侷域性電場,電力線重新排列,因此在蒸鍍上較薄的氧化矽隔絕層後使得染料分子的拉曼訊號有增強的效應。而在塗佈染料溶液時也發現,經過氧化矽修飾的樣品對於液體的表面張力也明顯減小,推測表面張力改變也是使染料分子容易附著的原因之一。

  This thesis is mainly study surface enhanced Raman scattering (SERS) through an isolating layer depositing on silver nanoparticles. Generally speaking, SERS has two explanations: One is Physical Enhancement (Electromagnetic Enhancement), and the other is Chemical Enhancement (Charge Transfer). When the silver nanoparticles receive optics electric field, the free electrons of silver surface will induce a large quantity of vibration and get enhanced resonance. This is called localized surface plasmons (LSPs). The purpose of this work is emphatic to study the Physical Enhancement that is the influences on SERS of varied isolating layers deposit on silver nanoparticles.
There are two kinds of materials, one is gold of conductors, and another one is SiOx of insulators:
In experiment, Raman signals will be intercepted when gold as isolating layer, we deemed that was resulted from the localized electron field (LEF) decreased by the metal shield effect. The material changed from gold to SiOx, and an interesting phenomenon presents: Raman signals of dye molecules will be enhanced according to the different thickness to maximum, and then gradually decay. When the thickness of SiOx layer reaches to 20nm, Raman signals raised to maximum, in comparison with silver nanoparticles without SiOx, the intensity increased 40% or so; when the thickness of SiOx was 40nm, Raman signal declined; this trend kept until 60nm, but the intensity was still larger than the sample without SiOx one. Finally, Raman signal disappeared when it was 70nm thick. Those results show that Raman scattering signals were enhanced even though the SiOx isolating layer is an insulator and there was no contact between silver nanoparticles and dye molecules.
By using scanning electron microscopy (SEM), we can observe that the sizes and shapes of silver nanoparticles became homogeneous after passing through evaporated SiOx isolating layer. The behavior of SiOx molecules were self-assembly-like nucleated by silver nanoparticles but not distributed even on the surface of samples. Therefore it can be reasoned that used SiOx as isolating layer, the shapes of silver nanoparticles will be modified and construct a lot of grooves among the silver nanoparticles because of volume grew, it made the dye molecules sink and adhere more easily. The shape after modifying can also make the localized electric field much larger and homogeneous. Hence, behind the thinner SiOx isolating layer of evaporation cause Raman signals of dye molecules will enhance. On the other hand, the surface tension of silver nanoparticles after being evaporated SiOx become evidently smaller to dye fluid. That brought about dye molecules were easy to adhere on them. Thus, I conjecture that made one reason of Raman scattering enhancement.

摘要 Ⅰ
Abstract Ⅲ
圖目錄 Ⅳ
表目錄 Ⅶ
目錄 Ⅷ
第一章 導論 1
1.1 拉曼散射歷史簡介 1
1.2表面增強拉曼散射原理簡介 4
1.3表面增強拉曼散射光譜學之特性 6
1.4實驗目的 8
第二章 相關理論 9
2.1 拉曼散射 9
2.2 金屬奈米粒子的表面電漿共振理論簡介 14
2.3 電磁場增強(electromagnetic enhancement)機制 17
2.4 表面增強拉曼散射(SERS)理論簡介 20
第三章 樣品製備、實驗架設 23
3.1 實驗樣品的製備 23
3.1.1 銀薄膜及銀奈米粒子樣品之製作 23
3.1.2 金奈米粒子樣品之製作 27
3.1.3 厚度呈現梯度之銀奈米粒子樣品之製作 28
3.1.4 銀奈米粒子上蒸鍍隔絕層樣品之製作 30
3.1.5 SERS作用之染料調製 32
3.2 實驗量測的架設 34
3.2.1 吸收光譜系統之實驗架設 34
3.2.2表面增強拉曼散射(SERS)光譜系統之實驗架設 35
第四章 實驗結果與討論 37
4.1玻璃、銀薄膜、銀奈米粒子的拉曼光譜 40
4.2材料-金與銀奈米粒子的拉曼光譜 45
4.3銀奈米粒子上覆蓋隔絕層對SERS訊號之影響 47
4.3.1銀奈米粒子上覆蓋不同隔絕層 47
4.3.2銀奈米粒子上沉積氧化矽後再蒸鍍金薄膜 52
4.3.3銀奈米粒子上沉積氧化矽有無金薄膜之熱退火比較 54
第五章 結論與未來展望 60
參考文獻 61
[1] Rajinder Singh, "C. V. Raman and the Discovery of the Raman Effect," Phys. perspect. Vol. 4, 399 - 420 (2002).
[2] 林鼎晸、朱仁佑、張祐嘉、汪天仁、蔡枝松、葉吉田、王俊凱/工研院材化所, SERS的發展與應用, 工業材料雜誌(261期).
[3] Fleischmann M.; Hendra P. J.; McQuillan A. J.; Chem. Phys. Lett. 1974, 26, 163.
[4] D.-S. Wang and M. Kerker, “Enhanced Raman scattering by molecules absorbed at the surface of celleidal spheroids,” Phys. Rev. B 24, 4 (15 Auguest 1981).
[5] George C. Schatz, Matthew A Young, and Richard P. Van Duyne, “Electromagnetic Mechanism of SERS,” Appl. Phys. Vol. 103, 19 - 46 (2006).
[6] Martin Moslovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. Vol. 36, 485 - 496 (2005).
[7] Paul L. Stiles, Jon A. Dieringer, Nilam C. Shah, and Richard P. Van Duyne, “Surface Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 2008, Vol. 1, 601 – 626.
[8] Katrin Kneipp1, Harald Kneipp, Irving Itzkan, Ramachandra R Dasari, and Michael S Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[9] Ewen Smith, Geoffrey Dent, “Modern Raman Spectroscopy – A practical Approach,” (John Wiley & Sons, Ltd, 2005).
[10] R. W. Wood, Phlios. Mag. 4, 396 (1902).
[11] U. Fano, J. Opt. Soc. Am. 31, 213 (1941).

[12] R. H. Rotchie, “Plasma lossed by fast electrons in thin films,” Phys. Rev. B 106, 874 - 881 (1957)
[13] 曾駿宇, 碩士論文, “藉由全像光柵研究奈米立子造成的表面電漿效應”, 國立嘉義大學光電暨固態電子研究所 (2008)
[14] 蕭鈞元, 碩士論文, “銀奈米粒子形成過程中即時偵測光譜的表面電漿效應”, 國立嘉義大學光電暨固態電子研究所 (2004)
[15] 邱國斌、蔡定平, “金屬表面電漿簡介”, 物理雙月刊(廿十八卷二期) 2006年4月
[16] 吳民耀、劉威志, “表面電漿子理論與模擬”, 物理雙月刊(廿十八卷二期) 2006年4月
[17] B. Sepúlveda, Y. Alacerdyan, J. Alegret, M.Käll, and P. Johansson, “Shape effect of single nanoholes in thin metal films,” OPTICS EXPRESS Vol. 16, NO. 8 5609 (14 April 2008)
[18] E. G. Brame, Jr., and J. G. Grasselli, ed., “Infrared and Raman Spectroscopy,” Part C (Marcel Dekker, 1977)
[19] C. N. Banwell, “Fundamental of Molecular Spectroscopy 2nd,”(McGraw-Hill, 1972)
[20] S. K. Freeman, “Applications of Laser Raman Spectroscopy,” (John Wiley & Sons, Ltd, 1974)
[21] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports, Vol. 408, 131 (2005)
[22] Eugene Hecht, “Optics 4th,” (Addison Wesley, 2002)
[23] W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661 - 12666 (1999)
[24] 陳立偉, “銀奈米微粒的拉曼強化效應”, 碩士論文, 國立中央大學物理研究所(2005)
[25] E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-Enhanced Raman Spectroscopy of Crystal Violet in the Presence of Halide and Halate Ions with Near-Infrared Wavelength Excitation,” J. Phys. Chem. A, 101, 7330-7335 (1997)
[26] John R. Ferraro, Kazuo Nakamoto, Chris W. Brown, “Introductory Raman Spectroscopy,” (Academic Press, 2003)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top