跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭達謙
研究生(外文):Ta-Chien Cheng
論文名稱:不同軋延製程控制顯微組織對ZK60鎂合金高溫機械性質影響之研究
論文名稱(外文):Study on High Temperature Mechanical Properties of ZK60 Magnesium Alloy by Controlling the Microstructure under Different Rolling Process
指導教授:王建義
指導教授(外文):Jian-Yih Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:ZK60軋延超塑性晶粒細化
外文關鍵詞:Grain refinementZK60Rollingsuperplasticity
相關次數:
  • 被引用被引用:4
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
本研究以商用結構材ZK60鎂合金為研究材料,對其在200℃及300℃之高溫機械性質進行研究,利用組合室溫、200℃與400℃之不同軋延溫度以獲得不同之材料微結構,比較及分析在經過不同熱機處理後,產出之等軸細晶組織與纖維狀細晶組織,將如何影響高溫機械性質。
經計算結果發現ZK60鎂合金經熱機處理產生的等軸細晶組織,在200℃應變速率1×10-2s-1~1×10-4s-1下的變形機制皆為冪次方潛變。在300℃時在應變速率1×10-2s-1下變形機制為冪次方潛變、在1×10-3s-1下變形機制改為晶界滑移、在1×10-4s-1下的變形機制
則又改為擴散潛變。而本實驗所達到的最高延伸率為856.2%是在溫度300℃應變速率1×10-4s-1的高溫拉伸測試中。
另外纖維狀組織,在冪次方潛變塑性變形時,內部產生均勻的動態再結晶,將明顯的影響到材料的延伸率,使潛變壽命提昇。另外在溫度300℃下,纖維狀組織仍然具有超塑性特質,延伸率約535.2%,從金相圖分析得知纖維狀加工組織在高溫拉伸變形時產生動態再結晶,使纖維狀組織之ZK60鎂合金之在變形過中產生為細晶粒而保有超塑性之特質。



In this study, the high temperature mechanical properties of thermal mechanical treated commercial ZK60 alloy were investigated. The research is performed at 200℃ and 300℃ to understand its high temperature mechanical properties. Thermal mechanical treatments were performed at different temperatures of 200℃, 400℃, and room temperature with different rolling reduction. The results show the equiaxed or fibrous structures were obtained after different thermal mechanical treatment, and consequently created an effect on the high temperature mechanical properties.
The deformation mechanism of ZK60 at 200℃ is power law creep under strain rate from 1×10-2s-1 to 1×10-4s-1. At 300℃, the deformation mechanism under strain rate 1×10-2s-1 is power law creep; under strain rate 1×10-3s-1 the deformation mechanism is grain boundary sliding; under strain rate 1×10-4s-1 the deformation mechanism is diffusion flow. In this research the equiaxed structure of ZK60 alloy shows maximum elongation of 856.2% tested at 300℃ and under a strain rate of 1×10-4s-1.
On the contrary, ZK60 alloy with fibrous structure will produce uniform dynamic recrystallization (DRX) in the tensile gauge during power law creep deformation. This phenomenon improves the elongation and creep life. Furthermore, ZK60 alloy with fibrous structure possesses superplasticity and keeps an elongation of 535.2% tested at same condition. From the microstructural evaluation, ZK60 alloy with fibrous structure produced the dynamic recrystallization during the high temperature tensile test at 300℃, and consequently showed the superplasticity.



中文摘要 ...I
Abstract ...II
總目錄 ...III
表目錄 ...VI
圖目錄 ...VII
第一章 緒論 ...1
1.1 前言 ...1
1.2 研究動機 ...2
第二章 文獻回顧 ...3
2-1 鎂合金簡介 ...3
2.1.1 鎂合金之特性 ...3
2-2 合金元素添加 ...4
2-2-1 添加鋁(Al)元素的影響 ...4
2-2-2 添加鋅(Zn)元素的影響 ...4
2-2-3 添加錳(Mn)元素的影響 ...5
2-2-4 添加鋰(Li)元素的影響 ...5
2-2-5 添加鈹(Be)元素的影響 ...5
2-2-6 添加銅(Cu)元素的影響 ...5
2-2-7 添加鐵(Fe)和鎳(Ni)元素的影響 ...6
2-2-8 添加鋯(Zr)元素的影響 ...6
2-2-9 添加稀土(Re)元素的影響 ...6
2-3 熱機處理對鎂合金的影響 ...6
2-3-1 鎂合金晶粒細化 ...6
2-3-2 熱機處理細化鎂合金之晶粒 ...7
2-3-3 晶粒細化之機制 ...8
2-4 塑性變形機制區域圖(Deformation Mechanism Map) ...10
2-5 超塑性 ...11
2-5-1 超塑性的發展 ...11
2-5-2 超塑性的條件 ...11
2-5-3 經過熱機處理製程之超塑性表現 ...12
第三章 實驗方法 ...23
3-1 材料準備 ...23
3-1-1 合金熔煉 ...23
3-1-2 板材擠製 ...23
3-1-3 板材均質化處理 ...23
3-2 晶粒細化製程 ...24
3-2-1 室溫軋延及退火處理 ...24
3-2-2 恆溫熱軋 ...25
3-2-3 異溫軋延 ...26
3-3 顯微組織觀察 ...27
3-3-1 OM金相組織觀察 ...27
3-3-2 SEM顯微組織觀察及EDS分析 ...27
3-4 機械性質測試 ...27
3-4-1 硬度量測 ...27
3-4-2 高溫拉伸測試 ...28
3-5 XRD測試 ...28
第四章 結果與討論 ...35
4-1 ZK60板材固溶及退火處理 ...35
4-2 晶粒細化製程 ...35
4-2-1 室溫冷軋及退火處理 ...35
4-2-2 恆溫軋延 ...36
4-2-3 異溫軋延 ...38
4-3 高溫機械性質 ...38
4-3-1 200℃高溫機械性質 ...39
4-3-2 300℃高溫機械性質 ...40
4-4 顯微組織對高溫機械性質的影響 ...42
第五章 結論 ...67
參考文獻 ...69
[1]Magnesium, in Wikipedia.
[2]R. Derker, R. Carnahan, R. Vining, D. Walukas, S. Lebeau, and N. Prewitt, Thixomolding Mg based alloys, in Proc. Magnesium Alloys and Their Applications, B. L. Mordike and K. U. Kainer, Editors. 1998, Werkstoff-Informationsgesellschaft mbH: Frankfurt. p. 545-550.
[3]B. Bark, C. Berk, and E. Hauschel, Magnesium Die-Castings—Examples from a Supplier, in Proc. Magnesium Alloys and Their Applications, B. L. Mordike and K. U. Kainer, Editors. 1998, Werkstoff-Informationsgesellschaft mbH: Frankfurt. p. 495-500.
[4]D. Magers and J. Willekens, Gobla Outlook on the Use of Magnesium Die-Castings in Automotive Applications, in Proc. Magnesium Alloys and Their Application, B. L. Mordike and K. U. Kaoner, Editors. 1998, Werkstoff-Informationsgesellschaft mbH: Frankfurt. p. 105-112.
[5]M. Mabuchi, K. Kubota, and K. Higashi, Tensile Strength,Ductility and Fracture of Magnesium-Silicon Alloys. Journal of Materials Science, 1996. Vol. 31: p. 1529-1535.
[6]M. Mabuchi and K. Higashi, Strengthening Machanisms of Mg-SiAlloys”. Acta Materialia, 1996. Vol. 44: p. 4611-4618.
[7]M. Mabuchi, K. Kubota, and K. Higashi, New Recycling Processby Extrusion for Chips of AZ91 Magnesium and MechanicalProperties of Extruded Bars. Materials transactions- JIM, 1995. Vol. 36(10): p. 1249-1254.
[8]R.E. Reed-hill and W.D. Robertson, Acta Metall., 1957. Vol. 5: p. 728-737.
[9]Q.L. Zhang, C. Lu, Y.P. Zhu, and W.J. Ding, Effect of rolling method on microstructure and properties of AZ31 magnesium alloy thin sheet. Chin. J. Nonferrous Met., 2004. Vol. 14: p. 391–397.
[10]T.C. Chang, J.Y. Wang, O.C. Ming, and S. Lee, Grain refining of magnesium alloy AZ31 by rolling. J. Mater. Process. Technol., 2003. Vol. 140: p. 588–591.
[11]Horng-yu Wu, Jia-yu Lin, Zhen-wei Gao, and Hung-wei Chen, Effects of age heat treatment and thermomechanical processing on microstructure and mechanical behavior of LAZ1010 Mg alloy. Mat Sci Eng A-Struct, 2009. Vol. 523(1-2): p. 7-12.
[12]Horng-yu Wu, Zhen-wei Gao, Jia-yu Lin, and Chui-hung Chiu, Effects of minor scandium addition on the properties of Mg-Li-Al-Zn alloy. Journal of Alloys and Compounds, 2009. Vol. 474(1-2): p. 158-163.
[13]Robert E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles. 3rd ed. 1994: PWS PUBLISHING COMPANY.
[14]J.K. Solberg, J. Torklep, O. Bauger, and H. Gjesland, Superplasticity in magnesium alloy AZ91. Mat Sci Eng A-Struct, 1991. Vol. 134: p. 1201–1203.
[15]H. Takuda, S. Kikuchi, and N. Hatta, Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-Deformation. Journal of Materials Science, 1992. Vol. 27: p. 937-940.
[16]H. Watanabe, T. Mukai, M. Mabuchi, and K. Higashi, High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scripta Materialia, 1999. Vol. 41(2): p. 209-213.
[17]M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia, 1997. Vol. 36(6): p. 681-686.
[18]H. Watanabe, T. Mukai, and K. Higashi, Superplasticity in a ZK60 magnesium alloy at low temperatures. Scripta Materialia, 1999. Vol. 40(4): p. 477-484.
[19]YD Yu, HY Jiang, Q Li, CQ Zai, and WJ Ding, Superplasticity and diffusion bonding of magnesium alloy ZK60. T Nonferr Metal Soc, 2005. Vol. 15(6): p. 1253-1257.
[20]H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia, 2002. Vol. 46(12): p. 851-856.
[21]A Bussiba, A Ben Artzy, A Shtechman, and S Ifergan, Grain refinement of AZ31 and ZK60 Mg alloys—towards superplasticity studies. Materials Science & Engineering A, 2001. Vol.
[22]T. Obara, H. Yoshinga, and S. Morozumi, Acta Materialia, 1973. Vol. 21: p. 845-853.
[23]J. Y. Wang, Y. N. Lin, T. C. Chang, and S. Lee, Recycling the magnesium alloy AZ91D in solid state. Materials Transactions, 2006. Vol. 47(4): p. 1047-1051.
[24]王建義, 鎂合金板材之壓形加工. 工業材料雜誌, 2001. Vol. 170.
[25]R. W. Cahn, P. Haasen, and E. J. Kramer, Structure and Properties of Nonferrous Alloys, in Materials Science and Technology. 1996. p. 131.
[26]Magnesium and Magnesium Alloys. ASM Speciality Handbook. 1999: ASM International.
[27]C. Shaw and H. Jones, The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys. Materials Science and Engineering A, 1997. Vol. 226-228: p. 856-860.
[28]魏汝超, 鎂合金之熱機處理與退火處理的顯微組織研究, 台灣大學材料科學與工程學研究所, 碩士論文,2003年.
[29]劉文勝, AZ61鎂合金的疲勞性質與破壞分析, 中央大學機械工程研究所, 碩士論文,2000年.
[30]賴耿陽, 非鐵金屬材料. 1998: 復漢出版社.
[31]ASM, Magnesium alloys, in Metals Handbook. 1985.
[32]C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton, Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002. Vol. 325(1-2): p. 344-355.
[33]張永耀, 金屬熔銲學. 1976: 徐氏基金會.
[34]J. A. Jensen and L. S. Chumbley, Processing and mechanical properties of magnesium-lithium composites containing steel fibers. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1998. Vol. 29(3): p. 863-873.
[35]魏振仁, 鎂合金時效行為之研究, 義守大學材料所, 碩士論文,2001年.
[36]A.K. Dahle, T.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn, Development of the as-cast microstructure in magnesiumaluminumalloys. Journal of Light Metals, 2001. Vol.: p. 61-72.
[37]K. Kubota, M. Mabuchi, and K. Higashi, Processing and mechanical properties of fine-grained magnesium alloys. Journal of Materials Science, 1999. Vol. 34(10): p. 2255-2262.
[38]H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu, and K. Higashi, Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization. Materials Transactions, 2001. Vol. 42(7): p. 1200-1205.
[39]G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, 1996. Vol. 8 VCH: p. 113.
[40]J. A. Chapman and D. V. Wilson, J. Inst. Metals. Vol. 91(1962-63): p. 35.
[41]L. Jin, D. L. Lin, D. L. Mao, X. Q. Zeng, and W. J. Ding, Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion. Materials Letters, 2005. Vol. 59(18): p. 2267-2270.
[42]Yongjun Chen, Qudong Wang, Jianguo peng, Chunquan Zhai, and Wenjiang Ding, Effect of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of processing technology, 2007. Vol. 182: p. 281-285.
[43]T. Mohri, T. Nishiwaki, T. Kinoshita, H. Iwasaki, M. Mabuchi, M. Nakamura, T. Ashina, T. Aizawa, and K. Higashi, Microstructure and Tensile Properties of Rolled Mg-5.5mass%-0.6mass%Zr Alloy”. Materials Transactions, 2000. Vol. 41: p. 1154-1156.
[44]J. C. Li, Appl., J. Phys., 1962. Vol. 33: p. 2958.
[45]R. W. Cahn and P. Haasen, Physical Metallurgy. Vol. 3. 1983.
[46]O. Sitdikov, R. Kaibyshev, and T. Sakai, Dynamic recrystallization based on twinning in coarse-grained Mg, in Magnesium Alloys 2003, Pts 1 and 2, Y. Kojima, T. Aizawa, K. Higashi, and S. Kamado, Editors. 2003. p. 521-526.
[47]E. Cerri, M. Cabibbo, and E. Evangelista, Microstructural evolution during high-temperature exposure in a thixocast magnesium alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002. Vol. 333(1-2): p. 208-217.
[48]R. W. Cahn and P. Haasen, Physical Metallurgy. 1983. p. 1596.
[49]張榮桂, 利用往復式擠製製作超塑性AZ91 鎂合金之研究, 國立清華大學材料科學工程研究所, 碩士論文論文,1999年.
[50]A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy Zk60. Acta Materialia, 2001. Vol. 49(7): p. 1199-1207.
[51]H. J. McQueem, N. D. Ryan, E. V. Konopleva, and X. Xia, Formation and Application of Grain Boundary Serrations. Canadian Metallurgical Quarterly, 1995. Vol. 34(3): p. 219-229.
[52]T. Sakai and M. Ohashi, The Effect of Temperature, Strain Rate and Carbon Content on the Hot Deformation of Carbon Steels. J. Iron Steel Inst. Jpn., 1981. Vol. 67(11): p. 2000-2009.
[53]T. Sakai and J. J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations. Acta Metall, 1984. Vol. 32(2): p. 189-209.
[54]J. P. Sah, G. J. Richardson, and C. M. Sellars, Grain-Size Effects During Dynamic Recrystallization of Nickel. Metal. Sci., 1974. Vol. 8(10): p. 325-331.
[55]H. J. Frost and M. F. Ashby, Deformation-mechanism maps : the plasticity and creep of metals and ceramics. 1st ed. 1982, Oxford Oxfordshire ; New York: Pergamon Press. ix, 166 p.
[56]Bengough GD, J Inst Metals, 1912. Vol. 7: p. 123.
[57]Jenkins CHM, J Inst Metals, 1928. Vol. 40: p. 21.
[58]T. Sakuma, Superplasticity in alloys. Current Opinion in Solid State & Materials Science, 1997. Vol. 2(3): p. 296-299.
[59]T. G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities. Journal of Materials Science, 2009. Vol. 44(22): p. 5998-6010.
[60]Langdon TG and Wadsworth J, Superplasticity in advanced materials—IC- SAM-91, in The Japan Society for Research on Superplasticity,, 1991, Osaka, Japan.
[61]Wadsworth W, Nieh TG, and Sherby OD, Future directions for superplasticity, in Superplasticity in Advanced Materials, H. S, TokizsneM, and FurushiroN, Editors. 1991, The Japanese Society for Research on Superplasticity: Tokyo. p. 13-22.
[62]X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature, 1999. Vol. 398(6729): p. 684-686.
[63]L. Lu, M. L. Sui, and K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science, 2000. Vol. 287(5457): p. 1463-1466.
[64]K. S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia, 2003. Vol. 51(19): p. 5743-5774.
[65]K. A. Padmanabhan, Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials. Journal of Materials Science, 2009. Vol. 44(9): p. 2226-2238.
[66]Weertman JR, Mechanical behaviour of nanocrystalline metals in nanostructured materials, in Processing, properties, and potential applications, Norwich, Editor. 2002, William Andrew Publishing.
[67]V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Materialia, 2002. Vol. 50(1): p. 61-73.
[68]J. Li, K. J. Van Vliet, T. Zhu, S. Yip, and S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature, 2002. Vol. 418(6895): p. 307-310.
[69]K. J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations. Physical Review B, 2003. Vol. 67(10).
[70]Harai Y, Kai M, Kaneko K, Horita Z, and Langdon TG, Mater Trans, 2008. Vol. 49: p. 76.
[71]Mishra RS, Valiev RZ, McFadden SX, Islamgaliev RK, and Mukherjee AK, Philos Mag A, 2001. Vol. 81: p. 37.
[72]Kai M, Horita Z, and Langdon TG, Mater Sci Eng A, 2008. Vol. 488: p. 117.
[73]Horita Z and Langdon TG, Scripta Materialia, 2008. Vol. 58: p. 1029.
[74]Pearson CE, J Inst Metals, 1934. Vol. 54: p. 111.
[75]Willam F. Smith, Foundations of Materials Science and Engineering. 3rd ed. 2004: McGraw Hill.
[76]H. J. McQueen, Development of dynamic recrystallization theory. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. Vol. 387: p. 203-208.
[77]WJ Kim, SW Chung, CS Chung, and D Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater, 2001. Vol. 49(16): p. 3337-3345.
[78]H. Luthy, R. A. White, and O. D. Sherby, Grain-Boundary Sliding and Deformation Mechanism Maps. Materials Science and Engineering, 1979. Vol. 39(2): p. 211-216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊