跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何善竺
研究生(外文):Shan-Chu Ho
論文名稱:硫醇抗亞硝化作用之動力學研究
論文名稱(外文):Kinetic Study on the Anti-nitrosative Effect of Thiols
指導教授:胡德民胡德民引用關係
指導教授(外文):Teh-Min Hu
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:121
中文關鍵詞:動力學氧化氮壞血酸高濃度穀胱甘
外文關鍵詞:GSHnitrosation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一氧化氮(nitric oxide,NO)於人體中扮演著多重的角色,在正常生理狀態下,低濃度的NO具細胞調節功能;然而在病理狀態下,高濃度的NO可能造成細胞損害。當發炎反應發生,體內產生大量的NO與超氧自由基(superoxide,O2•),兩者相互反應可產生peroxynitrite (ONOO),進而衍生出各種活性物質(reactive oxygen species, ROS; reactive nitrogen species, RNS),這些物質可能導致氧化(oxidation),硝化(nitration)或亞硝化(nitrosation)反應,造成細胞毒性等。近年來研究發現,亞硝化及氧化具有密切的相關性,且抗氧化物質(antioxidants)如抗壞血酸(ascorbic acid)及穀胱甘肽(glutathione,GSH)亦可影響亞硝化反應。
Nitric oxide (NO) plays both physiologic and pathophysiologic roles in the body. Under normal physiologic conditions, low levels of NO regulate many biological functions; however, under pathophysiologic conditions, high levels of NO can be deleterious. During inflammation, high levels of NO and superoxide (O2•) are generated and both radicals react with each other to form peroxynitrite (ONOO), from which various reactive oxygen species or reactive nitrogen species are derived. These species may cause cytotoxicity by modifying biomolecules via oxidation, nitration and/or nitrosation reactions. Recent studies have suggested that nitrosation and oxidation are closely related, and antioxidants, such as ascorbic acid and glutathione (GSH ), can affect nitrosation reaction.
正文目錄 II
圖目錄 VII
表目錄 X
附圖目錄 XI
中文摘要 XIII
英文摘要 XV
1.Alvarez, B., & Radi, R. (2003). Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 25(3), 295-311.
2.Awapara, J., & Wingo, W. J. (1953). On the mechanism of taurine formation from cysteine in the rat. Journal of Biological Chemistry, 203(1), 189-194.
3.Barry, H., & John M.C., G. (2007). Free radicals in biology and medicine.
4.Benrahmoune, M., Thérond, P., & Abedinzadeh, Z. (2000). The reaction of superoxide radical with N-acetylcysteine. Free Radical Biology and Medicine, 29(8), 775-782.
5.Bonini, M. G., & Augusto, O. (2001). Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. Journal of Biological Chemistry, 276(13), 9749-9754.
6.Burkert, H. (1983). Clinical overview of mesna. Cancer Treatment Reviews, 10(Supplement 1), 175-181.
7.陳妤榛. (2007). 榖胱甘肽與抗壞血酸影響亞硝基化動力學之研究 台灣: 國防醫學院碩士論文.
8.Commoner, B., Townsend, J., & Pake, G. E. (1954). Free Radicals in Biological Materials. Nature, 174(4432), 689-691.
9.Culbertson, S. M., & Porter, N. A. (2000). Unsymmetrical azo initiators increase efficiency of radical generation in aqueous dispersions, liposomal membranes, and lipoproteins. Journal of the American Chemical Society, 122(17), 4032-4038.
10.Daiber, A., Schildknecht, S., Müller, J., Kamuf, J., Bachschmid, M. M., & Ullrich, V. (2009). Chemical model systems for cellular nitros(yl)ation reactions. Free Radical Biology and Medicine, 47(4), 458-467.
11.David, A. W., & James, B. M. (1998). Chemical biology of nitric oxide: insights into regulatory, cytotoxic,and cytoprotective mechanisms of nitric oxide. Free Radical Biology & Medicine, 25, 434-456.
12.Dedeoglu, A., Kubilus, J. K., Jeitner, T. M., Matson, S. A., Bogdanov, M., Kowall, N. W., et al. (2002). Therapeutic effects of cystamine in a murine model of huntington's disease. The Journal of Neuroscience, 22(20), 8942-8950.
13.Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47-95.
14.Espey, M. G., Thomas, D. D., Miranda, K. M., & Wink, D. A. (2002). Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11127-11132.
15.Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373-376.
16.Gryglewski, R. J., Palmer, R. M. J., & Moncada, S. (1986). Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 320(6061), 454-456.
17.Guo, Y. L., Wang, B. J., Lee, J. Y., & Chou, S. Y. (1994). Occupational hand dermatoses of hairdressers in tainan city. Occupational and Environmental Medicine, 51(10), 689-692.
18.Halperin, E. C., Thier, S. O., & Rosenberg, L. E. (1981). The use of D-penicillamine in cystinuria: efficacy and untoward reactions. Yale Journal of biology & medicine, 6, 439-446.
19.Hodges, G. R., Marwaha, J., Paul, T., & Ingold, K. U. (2000). A novel procedure for generating both nitric oxide and superoxide in situ from chemical sources at any chosen mole ratio. first application: tyrosine oxidation and a comparison with preformed peroxynitrite. Chemical Research in Toxicology, 13(12), 1287-1293.
20.Hu, T.-M., & Chen, Y.-J. (2010). Nitrosation-modulating effect of ascorbate in a model dynamic system of coexisting nitric oxide and superoxide. Free Radical Research, 44(5), 552-562.
21.Ignarro, L. J. (2000). Nitric Oxide: biology and pathobiology.
22.Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9265-9269.
23.Jones, C. M., Lawrence, A., Wardman, P., & Burkitt, M. J. (2002). Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: re-evaluation of the rate constant. Free Radical Biology and Medicine, 32(10), 982-990.
24.Karoui, H., Hogg, N., Joseph, J., & Kalyanaraman, B. (1996). Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--An ESR-spin trapping study. Archives of Biochemistry and Biophysics, 330(1), 115-124.
25.Kelly, G. S. (1998). Clinical applications of N-acetylcysteine. Alternative Medicine Review 3, 114-127.
26.Keshive, M., Singh, S., Wishnok, J. S., Tannenbaum, S. R., & Deen, W. M. (1996). Kinetics of S-nitrosation of thiols in nitric oxide solutions. Chemical Research in Toxicology, 9(6), 988-993.
27.Keszler, A., Zhang, Y., & Hogg, N. (2010). Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radical Biology and Medicine, 48(1), 55-64.
28.Kirsch, M., & de Groot, H. (2002). Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. Journal of Biological Chemistry, 277(16), 13379-13388.
29.Kleinhenz, D. J., Fan, X., Rubin, J., & Hart, C. M. (2003). Detection of endothelial nitric oxide release with the 2,3-diaminonapthalene assay. Free Radical Biology and Medicine, 34(7), 856-861.
30.Knopf, K., Sturman, J. A., Armstrong, M., & Hayes, K. C. (1978). Taurine: an essential nutrient for the cat. Journal of Nutrition, 108(5), 773-778.
31.Knowles, R. G., Palacios, M., Palmer, R. M., & Moncada, S. (1989). Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 86(13), 5159-5162.
32.Lancaster, J. R. (2006). Nitroxidative, nitrosative, and nitrative stress:  kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chemical Research in Toxicology, 19(9), 1160-1174.
33.Lindell, Å., Denneberg, T., Hellgren, E., Jeppsson, J. O., & Tiselius, H. G. (1995). Clinical course and cystine stone formation during tiopronin treatment. Urological Research, 23(2), 111-117.
34.Markello, T. C., Bernardini, I. M., & Gahl, W. A. (1993). Improved renal function in children with cystinosis treated with cysteamine. The New England Journal of Medicine, 328(16), 1157-1162.
35.McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. Journal of Biological Chemistry, 244(22), 6049-6055.
36.Meister, A. (1988). The discovery of glutathione. Trends in Biochemical Science, 13, 1885-1888.
37.Meredith, M. J., & Reed, D. J. (1982). Status of the mitochondrial pool of glutathione in the isolated hepatocyte. Journal of Biological Chemistry, 257(7), 3747-3753.
38.Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., & Grisham, M. B. (1996). Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. Journal of Biological Chemistry, 271(1), 40-47.
39.Moncada, S., & Hlggs, E. A. (1991). Endogenous nitric oxide : physiology, pathology and clinical relevance (Vol. 21). Oxford, ROYAUME-UNI: Wiley-Blackwell.
40.N-acetylcysteine. (2000). Alternative Medicine Review, 5, 467-471.
41.Nguyen, T., Brunson, D., Crespi, C. L., Penman, B. W., Wishnok, J. S., & Tannenbaum, S. R. (1992). DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proceedings of the National Academy of Sciences of the United States of America, 89(7), 3030-3034.
42.Pagnotto, L. D., Brugsch, H. G., & Elkins, H. B. (1960). Treatment of chronic mercurialism with N-acetyl-penicillamine. American Industrial Hygiene Association Journal, 21(5), 419 - 422.
43.Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 333(6174), 664-666.
44.Pinto, A. F., Rodrigues, J. V., & Teixeira, M. (2010). Reductive elimination of superoxide: structure and mechanism of superoxide reductases. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1804(2), 285-297.
45.Pogocki, D., & Schöneich, C. (2001). Thiyl radicals abstract hydrogen atoms from carbohydrates: reactivity and selectivity. Free Radical Biology and Medicine, 31(1), 98-107.
46.Pou, S., & Rosen, G. M. (1998). Generation of thiyl radical by nitric oxide: a spin trapping study. Cambridge, ROYAUME-UNI: Royal Society of Chemistry.
47.Prabakaran, A. A. a. S. A. (2005). Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian Journal of Experimental Biology, 43, 963-974.
48.Reguli, J., & Miŝík, V. (1995). Superoxide scavenging by thiol/copper complex of captopril - an epr spectroscopy study. Free Radical Research, 22(2), 123-130.
49.Reiter, C. D., Teng, R.-J., & Beckman, J. S. (2000). Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. Journal of Biological Chemistry, 275(42), 32460-32466.
50.Riddles, P. W., Blakeley, R. L., & Zerner, B. (1979). Ellman's reagent: 5,5'-dithiobis(2-nitrobenzoic acid)--a reexamination. Analytical Biochemistry, 94(1), 75-81.
51.Schoen-nan, C., & Morton, Z. H. (1975). Effect of pH on the reactivity of the carbonate radical in aqueous solution. Radiation Research, 62(1), 18-27.
52.Schrammel, A., Gorren, A. C. F., Schmidt, K., Pfeiffer, S., & Mayer, B. (2003). S-nitrosation of glutathione by nitric oxide, peroxynitrite, and NO-/O2. Free Radical Biology and Medicine, 34(8), 1078-1088.
53.Schrammel, A., Pfeiffer, S., Schmidt, K., Koesling, D., & Mayer, B. (1998). Activation of Soluble Guanylyl Cyclase by the Nitrovasodilator 3-Morpholinosydnonimine Involves Formation of S-Nitrosoglutathione. Molecular Pharmacology, 54(1), 207-212.
54.Schreiber, J., Foureman, G. L., Hughes, M. F., Mason, R. P., & Eling, T. E. (1989). Detection of glutathione thiyl free radical catalyzed by prostaglandin H synthase present in keratinocytes. Study of co-oxidation in a cellular system. Journal of Biological Chemistry, 264(14), 7936-7943.
55.Stamler, J. S. (2004). S-Nitrosothiols in the blood: roles, amounts, and methods of analysis. Circulation Research, 94(4), 414-417.
56.STEIN, H. B., PATTERSON, A. C., OFFER, R. C., ATKINS, C. J., TEUFEL, A., & ROBINSON, H. S. (1980). Adverse effects of D-penicillamine in rheumatoid arthritis. Annals of Internal Medicine, 92(1), 24-29.
57.STERMANN, U. (1994). Biochemistry and molecular biology of nitric oxide synthases. Aulendorf, ALLEMAGNE: Cantor.
58.Sullivan, J., Ginsburg, B., Ratts, T., Johnson, J., Barton, B., Kraus, D., et al. (1979). Hemodynamic and antihypertensive effects of captopril, an orally active angiotensin converting enzyme inhibitor. Hypertension, 1(4), 397-401.
59.Teh-Min, H., Hayton, W. L., Morse, M. A., & Mallery, S. R. (2002). Dynamic and biphasic modulation of nitrosation reaction by superoxide dismutases. Biochemical and Biophysical Research Communications, 295(5), 1125-1134.
60.Thomas, D. D., Ridnour, L. A., Espey, M. G., Donzelli, S., Ambs, S., Hussain, S. P., et al. (2006). Superoxide fluxes limit nitric oxide-induced signaling. Journal of Biological Chemistry, 281(36), 25984-25993.
61.Trujillo, M., & Radi, R. (2002). Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Archives of Biochemistry and Biophysics, 397(1), 91-98.
62.Turney, T. A., & Wright, G. A. (1959). Nitrous acid and nitrosation. Chemical Reviews, 59(3), 497-513.
63.Wald, D. S., Law, M., & Morris, J. K. (2002). Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. British Medical Journal, 325(7374), 1202-1206.
64.Winterbourn, C. C., & Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biology and Medicine, 27(3-4), 322-328.
65.Zielonka, J., Sikora, A., Joseph, J., & Kalyanaraman, B. (2010). Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide. Journal of Biological Chemistry, 285(19), 14210-14216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top