(3.215.180.226) 您好!臺灣時間:2021/03/09 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂翔詠
研究生(外文):Hsiang-Yung Lu
論文名稱:深層海水製備礦物質原水:利用Selemion ASV 薄膜去除硫酸根離子
論文名稱(外文):Preparation of mineral source water from deep sea water: reduction of sulfate ion using Selemion ASV membrane
指導教授:林松華
指導教授(外文):Sung-Hwa Lin
口試委員:徐治平張有義曾琇瑱林松華古明弘
口試委員(外文):Jyh-Ping HsuYou-Im ChangShio-Jenn TsengSung-Hwa LinMing-Hong Ku
口試日期:99.07.13
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:64
中文關鍵詞:礦物質原水深層海水去除硫酸根離子電透析單價離子滲透選擇性薄膜Selemion ASV陰離子交換薄膜最佳操作條件滲透作用
外文關鍵詞:mineral source waterdeep sea waterreduction of sulfate ionelectrodialysismonovalent anion permselective membraneSelemion ASV anion-exchange membraneoptimal operational conditionsosmosis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:851
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近幾十年來,由於水資源利用的發展,以深層海水(DSW)製備可飲用的礦物質水愈趨重要,因為其純淨,較不易受到來自於陸地的汙染源所污染,且其富含生命所需的礦物質,如鎂離子和鈣離子等等。然而,DSW中高濃度的硫酸根離子,使得其在飲用的用途上大為受限。本次研究主要是探討商業化的陰離子單價滲透選擇性薄膜,Selemion ASV薄膜,在實驗型電透析裝置程序中,以低溫真空濃縮濃鹽水(鹽度約15%)做為原料水製備礦物質原水,其降低濃鹽水中 含量的效能,亦即其分離 和 兩種離子的效能。在研究過程中,我們研究兩種陰離子分離情況與ED程序時程和外加直流電壓強度兩者的關聯性。由實驗結果的分析得到以下數個重要結論:(1)低電壓(5V、7V)/高電壓(10V以上)下操作60分鐘後,電流(或離子流率)曲線保持在一較低/較高水平值;而在電壓值較高下,電流(或離子流率)會在ED時程結束前即漸漸降低並趨近於零值,亦即離子會在ED程序結束前即漸漸輸送完畢;(2)水槽液體體積變化,取決於離子本身輸送、電滲透,和滲透壓三個效應,其中前二者之效應,在ED程序中扮演著主要的角色,且當電壓越高時,此二者的效應越加明顯;(3) 的輸送大約與ED時程呈線性關係;(4) 對 的輸送呈現幾乎完全的阻礙效應,我們推論,塗佈在Selemion ASV薄膜表面上的滲透選擇層其孔洞大小與對 的大小甚為接近,是以當陰離子在滲透選擇層的孔洞中移動時,較小而佔優勢的 極有可能阻擋 進入孔洞中;(5)在高 產量、低 含量、以及合理的ED電能消耗等三個經濟效益考量下,利用最適法分析可找出ED程序之最佳的操作條件。
Preparing the regulated, potable mineral water from the deep sea water (DSW) becomes more and more prevailing in the recent decades, for DSW is of purity, free from the pollutant from the land, and rich in the vital ions, like the magnesium ion and the calcium ion. However, the high concentration of sulfate ion in DSW limits considerably its potable use. In this study, using a laboratory-scale electrodialysis (ED) apparatus, we investigate the performance of a commercial monovalent anion permselective membrane, Selemion ASV anion-exchange membrane, which is seldom studied in the literature, in the reduction of sulfate ion for the produced mineral source water. For efficiency, we use the highly concentrated brine from DSW, which has a salinity of about 15%, as the raw material water in ED process. The emphasis of present study is put on the interrelation between the separation of sulfate ion from the chloride ion, and both ED duration and the applied direct current (DC) voltage. The experimental results show that: (1) after an ascending stage (about 60 minutes), the electrical current (also ions flux) reaches a lower/higher plateau for lower/higher voltage, and it may approach to zero before the end of ED process for higher voltage; (2) the liquid volume change during ED process is dominated by both the ions transport and the electroosmosis for higher voltage; (3) the transport of chloride ions is approximately a linear function of ED duration; (4) the chloride ions show almost complete blocking effect for the transport of sulfate ions, and it is presumed that, the pore size of permselective layer coating on the Selemion ASV membrane surface is quite close to the size of sulfate ion, and hence, when the ions travel in these pores of permselective layer, the smaller, predominant chloride ions are very likely to block the sulfate ions from their entrance; (5) using the optimization, the optimal operational conditions of ED process can be determined under some criteria, including high chloride ion production, low sulfate ion content, and low electrical energy consumption.
摘要 Ι

英文摘要 ΙΙ

目錄 III

圖表目錄 V

第一章 緒論 1

1.1. 深層海水的特性與利用 1

1.2. 硫酸根離子的危害及其來源 4

1.3. 研究動機與目標 5

第二章 實驗原理與實驗儀器原理 8

2.1. 低溫真空濃縮器(Low Temperature and Vacuum Concentrators, LTVC) 8

2.2. 電透析(Electrodialysis, ED)設備原理 9

2.3. 分光光度計(Spectrophotometer)與陰離子濃度的測定 10

2.4. 感應耦合電漿發射光譜儀(Inductively Coupled Plasma Optical Emission
Spectrometry, ICP-OES)與陽離子濃度的測定 13

第三章 實驗方法 14

3.1. 實驗藥品與材料 14

3.2. 實驗所需之配製溶液 14

3.3. 實驗儀器與裝置 15

3.4. 實驗步驟 16

3.4.1. LTVC製備15 %濃鹽水實驗步驟 16

3.4.2. ED實驗步驟 16

3.4.3. 測量氯離子濃度及其檢量線的製作 17

3.4.4. 測量硫酸根離子濃度及其檢量線的製作 18

第四章 結果與討論 19

4.1. 電流 與消耗電能 19

4.2. C槽與D槽液體體積變化 20

4.3. ASV薄膜分離 之效能 21

4.4. ASV薄膜滲透選擇層之作用機制 22

4.5. ED最適化操作條件 23

4.6. 滲透壓效應 24

第五章 結論 27

符號說明 28

參考文獻 30

個人著作 33

圖表 34

自述 64


N. J. Huang, L. Y. Yu, Y. Z. Chang, S. C. Lee, C. P. Zhaung, C. S. Lin,以真空濃縮製程研製深層海水濃縮液及鹽之試驗研究,2008水利產業研討會,44-48,2008。
J. Y. Shey, L. Y Yu, J. H. Liu, Y. L. Shey, S. C. Lee,應用製鹽與電透析技術於深層海水中有效離子之分離技術,2008水利產業研討會,40-43,2008。
L. Y. Yu, J. Y. Shey, S. C. Lee,應用電透析技術結合低溫真空製鹽設備製備含鈣深層海鹽,2008水利產業研討會,36-39,2008。
中島敏光,洋深層水とは?. 21世紀の資源-海洋深層水を利用するー,養殖 37,86-89,2000。
林妤蓁、邱賢錦、李連容,台灣深層海水特性認知與產品之分析,花蓮資源與環境研討會論文集,125-136,2008。
宜蘭縣政府,南澳海洋深層水利用可行性先期規劃,財團法人工業技術研究院能源與資源研究所技術報告,4-14,2006。
陳伸賢、洪銘堅、黃宏莆、林文勝,台灣深層海水資源利用政策與產業推動策略,深層海水中日國際研討會,2004。
曹風民、鄭軍,精緻鹽水脫除硫酸根的技術改進,氯鹼工業 6,13-15,2003。
黃耐仁、張于仁、朱海文,以減壓濃縮方式製備高鎂含量機能水,財團法人石材暨資源產業研究發展中心技術報告,2009。
臺東縣政府,臺東縣設置深層海水生物技術園區可行性及BOT前置作業規劃報告,行政院經濟建設委員會技術報告,2-1~3-24,2004。
謝杰,液膜分離技術提取水中硫酸根的可行性分析,吉林建築工程學院學報,第四期,5-8,2007。
羅愛雁,二十一世紀藍金─深層海水產業,科技發展政策報導 第二期,106-109,2008。
K. E. Bouhidel, K. Oulmi, Concentration polarization in electrodialysis: buffer solutions experimental method, Desalination 132, 199-204, 2000.
T. V. Eliseeva, V. A. Shaposhnik, E. V. Krisilova, A. E. Bukhovets, Transport of basic amino acids through the ion-exchange membranes and their recovery by electrodialysis, Desalination 241, 86-90, 2009.
G. S. Gohil, V. V. Binsu, V. K. Shahi, Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes, Journal of Membrane Science 280, 210-218, 2006.
N. Kabay, M. Arda, I. Kurucaovali, E. Ersoz, H. Kahveci, M. Can, S. Dal, S. Kopuzlu,M. Haner, M. Demircioglu, M. Yuksel, Effect of feed characteristics on the separation performances of monovalent and divalent salts by electrodialysis, Desalination 158, 95-100, 2003.
N. Kabay, H. Kahveci, O. Ipek, M. Yuksel, Separation of monovalent and divalent ions from ternary mixtures by electrodialysis, Desalination 198, 74-83, 2006.
M. A. Menkouchi Sahli, M. Tahaikt, I. Achary, M. Taky, F. Elhanouni, M. Hafsi, M. Elmghari, A. Elmidaouia, Technical optimisation of nitrate removal from ground water by electrodialysis using a pilot plant, Desalination 167, 359, 2004.
E. R. Nightingale, Phenomenological theory of ion solvation. effective radii of hydrated ions, Journal of Chemical Physics 63, 1383, 1959.
S. Resbeut, G. Pourcelly, R. Sandeaux, C. Gavach, Electromembrane processes for waste stream treatment: electrodialysis applied to the demineralization of phenylalanine solutions, Desalination 120, 135-145, 1998.
V. Roquebert, S. Booth, R. Cushing, G. Crozes, E. Hansen, Electrodialysis reversal (EDR) and ion exchange as polishing treatment for perchlorate treatment, Desalination 131, 285-291, 2000.
G. Saracco, M. C. Zanetti, Ion transport through monovalent-anion-permselective membranes, Industrial & Engineering Chemistry Research 33, 96-101, 1994.
G. Saracco, Transport properties of monovalent-ion-selective membranes, Chemical Emfineering Science 52, 3019-3031, 1997.
T. Sakai, A. Yanagisawa, K. Higuchi, N. Teshima. N. Ura, New spectrophotometer equipped with long light path length cells and two channel FIA for trace metals, Talanta 52, 153-159, 2000.
W. Schmidt, A high performance micro-dual-wavelength-spectrophotometer (MDWS), Journal of Biochemical and Biophysical Methods 58, 15-24, 2004.
W. Schmidt, A mini-rapid-scan-spectrophotometer, Journal of Biochemical and Biophysical Methods 58, 125-137, 2004.
V. E. Santarosa, F. Peretti, V. Caldart, J. Zoppas, M. Zeni, Study of ion-selective membranes from electrodialysis removal of industrial effluent metals II: Zn and Ni, Desalination 149, 389-391, 2008.
V. H. Thang, W. Koschuh, K. D. Kulbe, S. Kromus, C. Krotscheck, S. Novalin, Desalination of high salt content mixture by two-stage electrodialysis as the first step of separating valuable substances from grass silage, Desalination 162, 343-353, 2004.
B. Van der Bruggen, A. Koninckx, C. Vandecasteele, Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration, Water Research 38, 1347-1353, 2004.
L. Zhao, D. Wu, L. F. Wu, T. Song, A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer, Journal of Biochemical and Biophysical Methods 70, 377-383, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔