跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志安
研究生(外文):Chih-An Huang
論文名稱:質子交換膜取代材料在雙槽式微生物燃料電池上的效能及特性評估
論文名稱(外文):Performance and characteristic of alternative materials replace proton exchange membrane in a double-chamber microbial fuel cell
指導教授:邱應志
指導教授(外文):Ying-Chih Chiu
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:96
中文關鍵詞:微生物燃料電池細菌沉積物最大功率密度
外文關鍵詞:Microbial fuel cellsBacterial sedimentMaximum power density
相關次數:
  • 被引用被引用:3
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物燃料電池是一種藉由細菌分解有機物質來進行產電的裝置。然而,目前微生物燃料電池有成本過高的問題存在,尤其耗材成本(如觸媒和質子交換膜等)就占主要配比。故本研究中則設法將上述之耗材和其他電池材料進行取代,取代材料之主軸以質子交換膜和電極的取代為主,前者是以細菌沉積物進行取代,目的為降低成本;後者則是以不鏽鋼反應槽進行取代,目的為簡化系統。使用的電池反應槽為雙槽式結構,而研究之類別可分為可行性試驗、凹槽面積試驗以及電極取代試驗等3 種。可行性實驗的目標在於使電壓趨勢具有再現性,並且在陰極槽加入曝氣裝置後,系統開始出現穩定的電壓趨勢,此時最大功率密度為13.6 mW/m2。但在停止曝氣4 天後,電壓趨勢開始向上竄升,且最大功率密度提升至21.4 mW/m2。在此發現當陰極槽持續曝氣時,容易有產電抑制作用的產生,並會干擾到系統之電性,而較適當的陰極槽溶氧值範圍為3~5mg/L 之間。而在對細菌沉積物進行分析後,發現生物質量僅占30.3%,故在組成上較傾向於底泥。在凹槽試驗中,則是以不同面積的質子交換系統來進行實驗(1.41 cm2、2.54 cm2、5.77 cm2、以及9.23 cm2 等),並在不同操作面積下,觀察其與產電效能和細菌每日產氣量的關係,但在研究中發現產氣行為與產電行為間並無明顯之關聯。在面積9.23 cm2 時,其產電效能最高(10.17 mW/cm2)、內耗能也最小(內阻638Ω),但菌體每日產氣量卻最低(日產氣量為0 ml)。反之,在面積1.41 cm2 時,雖然產電效能降低了(3.23 mW/cm2),內耗能也提升了(內阻1,470Ω),卻能保有較高的菌體每日產氣量(日產氣量225 ml)。因此在交換系統面積放大的同時,產電效能會得到提升,但陽極槽細菌每日產氣量之部分則會降低。而在電極取代試驗中,以不鏽鋼槽體做為碳電極的取代品,在取代後之產電效能雖僅為0.53 mW/cm2,但在碳電極取代上確定具可行性。
Bacteria can be used to catalyze the conversion of organic matter into electricity in microbial fuel cells. However, the disadvantages of existing microbial fuel cells are their high cost components including electrodes, catalysts, and proton exchange membranes. Therefore, bacterial sediment took the replace of proton exchange membrane; and the carbons electrodes were replaced by a stainless tank were explored in this study. The microbial fuel cell used in this study was based on a double-chamber structure, and the types of research included: (a) feasibility test, (b) notch area test, and (c) electrode replace test. The target of feasibility test was to make reproducibility confirmation. When the cathode chamber aeration started, the operating voltage showed reproducible trend. The maximum power density was 13.6 mW/m2. After stopping the aeration for 4 day, the voltage began to increase and reached a maximum power density of 21.4 mW/m2. The composition of bacterial sediment in the notches contained only 30.3% of organics; hence the system was a kind of sediment microbial fuel cell system. In the notch area test, four proton exchange areas of 1.41 cm2, 2.54 cm2, 5.77 cm2, and 9.23 cm2 were applied. When the exchange area increased, the electric efficiency increased as well, but the anodic daily gas decreased. For the area of 9.23 cm2, the system had has the highest electric efficiency (10.17 mW/cm2) with the lowest internal resistance (638Ω), but the lowest bacteria daily gas (0 ml/day). However, the system of area 1.41 cm2 had the lowest electric efficiency (3.23 mW/cm2) with the highest internal resistance (1,470Ω), and the highest bacteria daily gas (225 ml/day). In the electrode replace test, the electric efficiency used stainless steel tank was 0.53 mW/cm2, the value was lower than of 3.47 mW/cm2 of carbon electrode; however, the replacement is feasible.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
第二章 文獻回顧 4
2-1微生物燃料電池反應槽構造簡介 4
2-2細菌產電原理簡介 7
2-3電池效能評估指標 10
2-4電極 10
2-5觸媒 11
2-6基質種類 12
2-7電解液 14
2-8溶氧 14
2-9質子交換膜 15
2-10質子交換膜替代材料 16
2-10-1底泥 16
2-10-2生物膜 18
2-10-3濾膜 20
2-10-4替代性材料的缺點 21
2-11合併式電池/廢水反應槽 22
2-12生物陰極 27
第三章 實驗材料與方法 28
3-1實驗藥品 28
3-1-1實驗用水 28
3-1-2主要基質 28
3-1-3無機營養鹽與刺激性溶液 28
3-1-4陰極槽緩衝溶液配置 30
3-2實驗菌種 31
3-2-1菌種來源 31
3-2-2菌種馴化 31
3-3微生物燃料電池之相關材料 32
3-3-1陽極與陰極電極 32
3-3-2電極端導線 33
3-3-3電池反應槽 34
3-3-4外接電阻 36
3-3-5曝氣馬達 36
3-4數據擷取裝置 37
3-5 pH計 37
3-6顯微鏡 38
3-7實驗分析方法 38
3-7-1電池效能計算方式 38
3-7-2電池內電阻計算 39
3-7-3生物質量的量測 40
3-7-4極化曲線的製作 40
3-7-5陽極槽產氣量的量測 40
3-7-6陰極槽溶氧的偵測 41
3-8實驗方法及步驟 42
3-8-1細菌濃度檢量線 42
3-8-2微生物燃料電池的操作方法 44
3-8-3凹槽式沉積物微生物燃料電池之可行性測試 48
3-8-4不同凹槽面積的反應槽之產電效能測試 49
3-8-5電極取代化試驗 49
3-8-6實驗架構流程 50
第四章 結果與討論 51
4-1可行性試驗之結果 51
4-1-1細菌沉積物取代材料的發現 51
4-1-2導線的干擾 52
4-1-3曝氣對產電的影響 53
4-1-4陽極槽生物質量濃度對電壓輸出的影響 59
4-1-5沉積物的分析 60
4-1-6陰極槽水分散失對產電效能的影響 61
4-1-7每日產氣量的分析 62
4-2凹槽面積對電池系統的影響 64
4-2-1最大功率密度比較 64
4-2-2產電抑制作用比較 70
4-2-3產電活性比較 72
4-2-4內電阻比較 73
4-2-5產氣特性比較 74
4-2-6陽極槽溢流液之pH值比較 76
4-3電極取代的結果 77
4-3-1電極取代之可行性測試 77
4-3-2產電效能比較 78
4-3-3產電活性與內電阻比較 82
第五章 結論與建議 83
5-1結論 83
5-2建議 84
參考文獻 86
附錄A 93
附錄B 95
Aldrovandi, A., E. Marsili, L. Stante, P. Paganin, S. Tabacchioni, and A. Giordano, “Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell.” Bioresource Technology 100, 3252-3260 (2009)
An, J., D. Kim, Y. Chun, S.J. Lee, H.Y. Ng, and I.S. Chang, “Floating-Type Microbial Fuel Cell (FT-MFC) for Treating Organic-Contaminated Water.” Environmental Science and Technology 43, 1642-1647 (2009)
Bergel, A., D. Feron, and A. Mollica, “Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm.” Electrochemistry Communications 7, 900-904 (2005)
Bond, D.R., D.E. Holmes, L.M. Tender, and D.R. Lovley, “Electrode-reducing microorganisms that harvest energy from marine sediments.” Science 295, 483-485 (2002)
Bullen, R.A., T.C. Arnot, J.B. Lakeman, and F.C. Walsh, “Biofuel cells and their development.” Biosensors and Bioelectronics 21, 2015-2045 (2006)
Cao, Y., Y. Hu, J. Sun, and B. Hou, “Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell.” Bioelectrochemistry (2009)
Chae, K.J., M.J. Choi, J.W. Lee, K.Y. Kim, and I.S. Kim, ” Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.” Bioresource Technology 100, 3518-3525 (2009)
Chaudhuri, S.K., and D.R. Lovley, “Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells.” Nature Biotechnology 21, 1229-1232 (2003)
Chen, G.W., S.J. Choi, T.H. Lee, G.Y. Lee, J.H. Cha, and C.W. Kim, “Application of biocathode in microbial fuel cells: cell performance and microbial community.” Applied Microbiology and Biotechnology 79, 379-388 (2008)
Cheng, S.S., S.L. Li, C.H. Chen, H.C. Chang, and S.M. Liu, “Electron Transfer to Carbon Felt Electrode Mechanism Study of Shewanella sp. NTOU1.” 中華民國環境工程學會廢水處理技術研討會 (2008)
Clauwaert, P., D.V.D. Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstraete, “Open air biocathode enables effective electricity generation with microbial fuel cells.” Environmental Science and Technology 41, 7564-7569 (2007)
Davis, G., H.A.O. Hill, W.J. Aston, I.J. Higgins, and A.P.F. Turner, “Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase.” Enzyme and Microbial Technology 5, 383-388 (1983)
Delaney, G. M., H.P. Bennetto, J.R. Mason, S.D. Roller, J.L. Stirling, and C.F. Thurston, “Electron-transfer Coupling in microbial fuel cell. 2. Performance of fuel cells containing selecterd microorganism-mediator substrate combinations.” Journal of Chemical Technology and Biotechnology. Biotechnology 34, 13-27 (1984)
Dumas, C., A. Mollica, D. Feron, R. Basseguy, L. Etcheverry, A. Bergel, “Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials.” Electrochimica Acta 53, 468-473 (2007)
Ghangrekar, M.M., and V.B. Shinde, “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production.” Bioresource Technology 98, 2879-2885 (2007)
Gil, G.C., I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, and H.J. Kim, “Operational parameters affecting the performance of a mediator-less microbial fuel cell.” Biosensors and Bioelectronics 18, 327-334 (2003)
Gorby, Y.A., S. Yanina, S.J. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson and J.K. Fredrickson, “Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms,” Proceedings of the National Academy of Sciences of the United States of America 103, 11358-11363 (2006)
He, Z., and L.T. Angenent, “Application of bacterial biocathodes in microbial fuel cells.” Electroanalysis 18, 2009-2015 (2006)
He, Z., H. Shao, and L.T. Angenent, “Increased power production from a sediment microbial fuel cell with a rotating cathode.” Biosensors and Bioelectronics 22, 3252-3255 (2007)
Hernandez, M.E., A. Kappler, and D. K. Newman, “Phenazines and other redox-active antibiotics promote microbial mineral reduction.” Applied and Environmental Microbiology 70, 921-928 (2004)
Hong, S.W., I.S. Chang, Y.S. Choi, and T.H. Chung, “Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell.” Bioresource Technology 100, 3029-3035 (2009)
Jang, J.K., T.H. Pham, I.S. Chang, K.H. Kang, H. Moon, K.S. Cho, and B.H. Kim, “Construction and operation of a novel mediator- and membrane-less microbial fuel cell.” Process Biochemistry 39, 1007-1012 (2004)
Karube, I., H.M. Matsuoka, H. Murata, K. Kajiwara, S. Suzuki, and M. Maeda, “Large-scale bacterial fuel cell using immobilized photosynthetic bacteria.” Annals of the New York Academy of Sciences 434, 427-436 (1984)
Lewis, K., “Symposium on Bioelectrochemistry of microorganisms IV. Biochemical fuel cells.” Bacteriological Reviews 30, 101-146 (1966)
Liu, H., S. Cheng, and B.E. Logan, “Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.” Environmental Science and Technology 39, 5488-5493 (2005)
Liu, H., and B.E. Logan, “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.” Environmental Science and Technology 38, 4040-4046 (2004)
Logan, B., S. Cheng, V. Watson, and G. Estadt, “Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.” Environmental Science and Technology 41, 3341-3346 (2007)
Logan, B.E., and J.M. Regan, “Electricity-producing bacterial communities in microbial fuel cells.” Trends in Microbiology 14, 512-518 (2006)
Lovley, D.R., “Bug juice: harvesting electricity with microorganisms.” Nature Reviews Microbiology 4, 497-508 (2006)
Lowy, D.A., L.M. Tender, J.G. Zeikus, D.H. Park, and D.R. Lovley, “Harvesting energy from the marine sediment-water interface II:Kinetic activity of anode materials.” Biosensors and Bioelectronics 21, 2058-2063 (2006)
Malina, F.J., and F.G. Pohland, “Design of anaerobic process for the treatment of industrial and municipal wastes.” Water Quality Manage. Library 7, 169 (1992)
Marsili, E., D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick and D.R. Bond, “Shewanella secretes flavins that mediate extracellular electron transfer.” Proceedings of the National Academy of Sciences of the United States of America 105, 3968-3973 (2008)
Morris, J.M., P.H. Fallgren, and S. Jin, “Enhanced denitrification through microbial and steel fuel-cell generated electron transport.” Chemical Engineering Journal 153, 37-42 (2009)
Oh, S., B. Min, and B.E. Logan, “Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells.” Environmental Science and Technology 38, 4900-4904 (2004)
Park, D.H., and J.G. Zeikus, “Improved fuel cell and electrode designs for producing electricity from microbial degradation.” Biotechnology and Bioengineering 81, 348-355 (2003)
Potter, M.C., “Electrical effects accompanying the decomposition of organic compounds.” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 84, 260-276 (1911)
Rabaey, K., N. Boon, S.D. Siciliano, M. Verhaege, and W. Verstraete, “Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer.” Applied and Environmental Microbiology 70, 5373-5382 (2004)
Rabaey, K., S.T. Read, P. Clauwaert, S. Freguia, P.L. Bond, L.L. Blackall, and J. Keller, “Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.” The ISME Journal 2, 519-527 (2008)
Rao, J.R., G.J. Richter, F. Von Sturm, and E. Weidlich, “The Performance of Glucose Electrodes and the Characteristics of Different Biofuel Cell Constructions.” Bioelectrochemistry and Bioenergetics 3, 139-150 (1976)
Reimers, C.E., P. Girguis, H.A. Stecher, L.M. Tender, N. Ryckelynck, and P. Whaling, “Microbial fuel cell energy from an ocean cold seep.” Geobiology 4, 123-136 (2006)
Roller, S.D., H.P. Bennetto, G.M. Delaney, J.R. Mason, J.L. Stirling, and C.F. Thurston, “Electron-transfer coupling in microbial fuel-cells. 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria.” Journal of Chemical Technology and Biotechnology. Biotechnology 34, 3-12 (1984)
Shantaram, A., H. Beyenal, R.R.A. Veluchamy, and Z. Lewandowski, “Wireless Sensors Powered by Microbial Fuel Cells.” Environmental Science and Technology 39, 5037-5042 (2005)
Sharma, Y., and B. Li, “The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs).” Bioresource Technology 101, 1844-1850 (2010)
Sun, J., Y. Hu, Z. Bi, and Y. Cao, “Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation.” Journal of Power Sources 187, 471-479 (2009)
Tender, L.M., C.E. Reimers, H.A. Stecher III, D.E. Holmes, D.R. Bond, D.A. Lowy, K. Pilobello, S.J. Fertig, and D.R. Lovley, “Harnessing microbially generated power on the seafloor.” Nature Biotechnology 20, 821-825 (2002)
Thurston, C.F., H.P. Bennetto, and G.M. Delaney, “Glucose Metabolism in a Microbial Fuel Cell: Stoichiometry of Product Formation in a Thionine-mediated Proteus Vulgaris Fuel Cell and Its Relation to Coulombic Yield.” Journal of General Microbiology 131, 1393-1398 (1985)
Thygesen, A., F.W. Poulsen, B. Min, I. Angelidaki, and A.B. Thomsen, “The effect of different substrates and humic acid on power generation in microbial fuel cell operation.” Bioresource Technology 100, 1186-1191 (2009)
Tokuji, I., and K. Kenji, “Vioelecrocatalyses-based Application of Quinoproteins and Quinoprotein-containing Bacterial Cells in Biosensors and Biofuel Cells.” Biochimica and Biophysica Acta 1647, 121-126 (2003)
Veag, C.A., and I. Fernandez, “Mediating Effect of Ferric Chelate Compounds in Microbial Fuel Cells with Lactobacillus Plantarum, Streptococius Lactates, and Erwina Dissolvens.” Biotechnology and Bioengineering 17, 217-222 (1987)
Wingard, L.B., C.H. Shaw, and J.F. Castner, “Bioelectrochemical fuel-cells.” Enzyme and Microbial Technology 4, 137-142 (1982)
Yahiro, A.T., S.M. Lee, and D.O. Kimble, “Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies.” Biochimica et Biophysica Acta (BBA) - Specialized Section on Biophysical Subjects 88, 375-383 (1964)
Yang, S., B. Jia, and H. Liu, “Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell.” Bioresource Technology 100, 1197-1202 (2009)
You, S., Q. Zhao, J. Zhang, H. Liu, J. Jiang, and S. Zhao, “Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells.” Biosensors and Bioelectronics 23, 1157-1160 (2008)
Young, T.G., L. Hadjipetrou, and M.D. Lilly, “The theoretical aspects of biochemical fuel cell.” Biotechnology and Bioengineering 8, 581-593 (1966)
Yu, E.H., S. Cheng, K. Scott, and B. Logan, “Microbial fuel cell performance with non-Pt cathode catalysts.” Journal of Power Sources 171, 275-281 (2007)
Zhan, Y.L., P.P. Zhang, G.X. Yan, J.L. Wang, and S.H. Guo, “Progress in microbial fuel cell and its application.” Modern Chemical Industry 27, 13-17 (2007)
邱應志,地下水中四氯乙烯整合式復育方法研究,(1998)
連靜,馮雅麗,李浩然和杜竹瑋,微生物燃料電池的研究進展,過程工程學報第6卷第2期,(2005)
黃鎮江,燃料電池,滄海書局,第3版,(2008)
蔡媛伃,李志源,生物燃料電池處理葡萄糖溶液之產電潛能,中華民國環境工程學會第三十屆廢水處理研討會,(2005)
寶玥,吳霞琴,生物燃料電池的研究發展,電化學第10卷第1期,(2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top