(3.238.7.202) 您好!臺灣時間:2021/03/04 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國典
研究生(外文):Guo-Dian Huang
論文名稱:負壓箱式醱酵法處理燃料油污染土壤之研究
論文名稱(外文):Bio-remediation of fuel oil contaminated soil by negative-pressure forced aeration fermentation
指導教授:林啟燦林啟燦引用關係
指導教授(外文):Chitsan Lin
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海洋環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:108
中文關鍵詞:生物整治高溫醱酵負壓箱式醱酵法燃料油臭味逸散
外文關鍵詞:Bio-remediationthermophilic fermentationnegative-pressure forced aerationfuel oilodor emission
相關次數:
  • 被引用被引用:3
  • 點閱點閱:307
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
傳統的油污染生物整治方法,多是在常溫條件下利用嗜油菌進行生物整治,鮮少探索在高溫的環境下利用高溫嗜油菌及提高油分解效率。然而在廚餘堆肥化過程中,微生物能自然醱酵演進出為期2~3星期之高溫期(65~80℃),正是科學家研究探索高溫醱酵分解油污染效率之契機,但在醱酵過程中,所產出之臭味逸散問題相當嚴重。於是本研究將利用高溫期較長(約30天)且能有效收集臭味氣體之負壓箱式廚餘堆肥化法,來進行處理燃料油污染土壤試驗。初始堆肥原料為 1,000公斤,其配比為廚餘:回流菌種:木屑= 70:15:15(重量比);另外再加入7公斤之燃料油(模擬7,000 mg/kg 之燃料油污染),於體積為1.5 m3、抽氣速率設定為 0.10~0.12 L air/ kg dry solid min 之負壓箱裡,進行廚餘堆肥化程序。實驗過程中持續監測肥堆溫度、pH 值及含水率,以確保堆肥化程序之正常演進;同時追蹤肥堆TPH之變化,以掌握油品之分解情況。研究結果顯示,(一)負壓箱式醱酵過程中,溫度和pH值變化與一般正常堆肥化過程趨勢相同,因此,添加 7,000 mg/kg 之燃料油並沒有影響到正常堆肥化程序之演進亦即,沒有抑制生物反應之現象。(二)負壓箱式醱酵過程,歷經升溫、高溫醱酵及回溫等階段,其中高溫醱酵期(65~80 ℃)長達28天之久,提供了一個良好的高溫環境。(三)廚餘堆肥化過程對燃料油具有相當良好的降解效果,經過120天堆肥化處理,TPH去除率高達96 % 以上,並可將燃料油處理至符合土壤與地下水污染整治法之土壤TPH管制標準1000 mg/kg以下。(四)堆肥化處理完後之產出物,經終產品安全性鑑定後確定無毒、無害,可作為土壤改良劑使用,未來若能通過有機肥料鑑定,將可更進一步利用來發展生態有機農業。因此,利用負壓箱式醱酵程序處理燃料油污染除了可有效收集堆肥化過程產生之臭味氣體及VOC,不致逸散至環境中外,亦能有效處理燃料油污染之問題。未來若能將此技術應用到油污染整治場址中,不僅可以快速、低成本的降解油污染,解除管制;回收之廚餘及油污染土壤不需依賴傳統焚化處理方法,亦能達到節能減碳的效果。
The traditional method for bio-remediation often makes use of oil- degrading bacteria under mesophilic conditions, but seldom under thermophilic conditions. However, during the oil-degrading process, the bacteria may ferment for 2–3 weeks, producing a high temperature of 65 to 80oC; although this gives scientists the chance to explore the efficiency of the oil-degrading process, it also produces a powerful odor. This study adopted the negative-pressure forced aeration method, which has a longer period of high temperature (approx. 30 days) and can effectively collect the odor in processing soil polluted by oil. The raw materials were 1,000 kg (in total) with organic waste to backflow bacteria to sawdust = 70:15:15 by weight. 7kg of fuel (simulating fuel pollution with 7,000 mg/kg) were added into a 1.5 m3 negative pressure box aerated with exhausting rate of 0.10~0.12 L air/ kg dry solid min. The parameters used to monitor the progress of a composting process and the product quality included: temperature, moisture content and pH. Meantime, total petroleum hydrocarbons (TPH) were also monitored to understand the status of the oil degrading. The study results show that: (1) During negative-pressure forced aeration, the variation profiles of temperature and PH were similar to those monitored during normal composting, indicating that the 7,000 mg/kg fuel oil added did not affect the progress of normal composting. (2) The compost temperature rose to 65-80oC and maintained this temperature range for up to 28 days, which provided the compost with a good thermophilic fermentation environment. (3) The fuel oil was efficiently degraded through the progress of organic waste composting. The removal efficiency of TPH was above 96% after 120-day composting, and TPH concentration in the compost was below Taiwan’s standard for soil and groundwater pollution of 1,000 mg/kg. (4) The product of the process was carried out under safety inspection and was determined to be toxin-free and non-hazardous, so that it could be used as soil conditioner. Therefore, the use of negative-pressure forced aeration fermentation to treat fuel oil not only effectively collects the emissions of odor and volatile organic compounds which are naturally produced during the composting process, but also efficiently handles the fuel oil pollution problem. In the future, this technology can not only greatly shorten the treatment process if it is applied to fuel-oil contaminated sites, but also offer another means of handling organic wastes.
中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 X
圖目錄 XI
緒言 1
1.1研究動機 1
1.2研究目的 3
第二章 文獻回顧 4
2.1堆肥化介紹 4
2.2堆肥化之原理和影響因素 4
2.2.1溫度 5
2.2.2水分 7
2.2.3酸鹼值(pH) 7
2.2.4氧氣 8
2.2.5營養成分 10
2.2.6植菌種 10
2.3堆肥化方式 10
2.4燃料油基本介紹 13
2.5總石油碳氫化合物(TPH) 15
2.6油品污染導致人體健康之危害 16
2.7生物處理技術介紹 18
2.8國外利用堆肥處理油污染土壤之案例探討 19
2.9國內相關案例發展之回顧 21
第三章 研究設備及方法 24
3.1研究架構 24
3.2研究材料 25
3.3研究設備 26
3.4研究方法 27
3.4.1負壓箱式堆肥系統處理流程 27
3.4.2負壓箱系統之設計 28
3.4.3負壓箱抽氣速率試驗 30
3.4.4負壓箱式醱酵法處理燃料油試驗 30
3.5負壓箱式堆肥化過程基本參數之監測方法 31
3.5.1溫度測定 31
3.5.2含水率測定 31
3.5.3酸鹼值(pH)測定 32
3.6萃取方法 32
3.6.1堆肥萃取方法 32
3.6.2滲出水萃取方法 32
3.7總石油碳氫化合物之分析方法 33
3.7.1檢量線之製作 34
3.7.2檢量線之線性與確認 34
3.7.3空白樣品分析 35
3.7.4重複樣品分析 35
3.7.5添加樣品分析 35
3.8降解產物VOC之收集及分析方法 35
3.9終產品之安全性確認 40
3.9.1重金屬含量之測定 40
3.9.2 SVOCS之分析方法 40
3.9.3種子發芽率實驗 42
第四章 結果與討論 43
4.1設置負壓箱式醱酵系統 43
4.2負壓箱抽氣速率試驗 44
4.2.1最佳抽氣速率 44
4.2.2油污染土壤分解效率 45
4.3負壓箱式醱酵法處理燃料油試驗 47
4.3.1負壓箱式醱酵過程中含水率之控制 47
4.3.2負壓箱式醱酵過程中溫度之變化 48
4.3.3負壓箱式醱酵過程中pH之變化 49
4.3.4負壓箱式醱酵過程TPH之變化 50
4.3.5 負壓箱式醱酵過程滲出水之分析 55
4.3.6負壓箱式醱酵過程VOC中間產物之分析 58
4.4終產品之安全性確認 59
4.5負壓箱式醱酵法處理油污染土壤技術經濟成本效益分析 63
第五章 結論與建議 66
5.1結論 66
5.2建議後續研究之課題 67
參考文獻 68
附錄一 物質安全資料表-燃料油 75
附錄二 新型專利審查核准處分書 89
附錄三 負壓箱式醱酵過程中間產物VOC之GC圖譜 103
Atlas, R. M., Bartha, R. (1998). Composting. Microbial Ecology, 470-476.
Audic, J. M., Faup, G. M., Navarro, J. M. (1984). Specific activity of nitrobacter through attachment on granular media. Water Research, 18(6), 745-750.
Beffa, T., Blanc, M., Aragno, M. (1996). Obligately and facultatively autotrophic, sulfur and hydrogen oxidizing thermophilic bacteria isolated from hot composts. Arch.Microbiol, 165, 34-40.
Boulter-Bitzer, J. I., Trevors, J. T., Boland, G. J. (2006). A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Applied Soil Ecology, 34(1), 65-81.
Cekmecelioglu, D., Demirci, A., Graves, R. E., Davitt, N. H. (2005). Applicability of optimised in-vessel food waste composting for windrow systems. Biosystems Engineering, 91(4), 479-486.
Colwell, R. R., Walker, J. D. (1977). Ecological aspects of microbial degradation of petroleum in the marine environment. Microbiol, 5, 423-445.
Diaz, L. F., Savage , G. M., Eggerth, L. L., Golueke , C. G. (1991). Composting and recycling municipal solid waste. Lewis Publisher, 122.
Hansgate, A. M., Schloss, P. D., Hay, A. G., Walker, L. P. (2005). Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiology Ecology, 51(2), 209-214.
Haug, R. T. (1993). The practical handbook of compost engineering. Lewis, 157.
Hwang, E. Y., Park, J. S., Kim, J. D., Namkoong, W. (2006). Effects of aeration mode on the composting of diesel-contaminated soil. Journal of Industrial and Engineering Chemistry, 12(5), 694-701.
Kriipsalu, M., Marques, M., Nammari, D. R., & Hogland, W. (2007). Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics. Journal of Hazardous Materials, 148(3), 616-622.
Lee, S., Oh, B., Kim, J. (2008). Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Bioresource Technology, 99(7), 2578-2587.
Lee, M., Hidaka, T., Tsuno, H. (2008). Effect of temperature on performance and microbial diversity in hyperthermophilic digester system fed with kitchen garbage. Bioresource Technology, 99(15), 6852-6860.
Lin, C. (2008). A negative-pressure aeration system for composting food wastes. Bioresource Technology, 99(16), 7651-7656.
Litchfield, C. (1991). Practices, potential, and pitfalls in the application of biotechnology to environmental problems. Environmental Biotechnology for Waste Treatment, 41, 147-157.
Mackay, D., McAuliffe, C. D. (1989). Fate of hydrocarbons discharged at sea. Oil and Chemical Pollution, 5(1), 1-20.
Martín-Gil, J., Navas-Gracia, L. M., Gómez-Sobrino, E., Correa-Guimaraes, A., Hernández-Navarro, S., Sánchez-Báscones, M. (2008). Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the prestige oil spill. Bioresource Technology, 99(6), 1821-1829.
Mickinley, V. L., Vestal, J. R. (1985). Microbial activity in composting. Biocycle, 26, 39-43.
Miller, F.C. (1992). Composting as process based on the control of ecologically selective factors. Soil Microbial Ecology, 515-554.
Namkoong, W., Hwang, E. Y., Cheong, J. G., Choi, J. Y. (1999). A comparative evaluation of maturity parameters for Food Waste composting. Compost Science and Utilization, 17, 55-62.
Namkoong, W., Hwang, E., Park, J., Choi, J. (2002). Bioremediation of diesel-contaminated soil with composting. Environmental Pollution, 119(1), 23-31.
Pignatello, J. J., Xing, B. (1995). Mechanisms of slow sorption of organic chemicals to natural particles. Environment Science and Technology, 30(1), 1-11.
Roig, A., Cayuela, M. L., Sánchez-Monedero, M. A. (2004). The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere, 57(9), 1099-1105.
Ross, R. C., Harris, P. J. (1983). The significance of thermophilic fungi in mushroom compost preparation. Scientia Horticulturae, 20(1), 61-70.
Suehara, K., Ohta, Y., Nakano, Y., Yano, T. (1999). Rapid measurement and control of the moisture content of compost using near-infrared spectroscopy. Journal of Bioscience and Bioengineering, 87(6), 769-774.
Thambirajah, J. J., Zulkali, M. D., Hashim, M. A. (1995). Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches. effect of nitrogen supplementation on the substrate. Bioresource Technology, 52(2), 133-144.
Van Gestel, K., Mergaert, J., Swings, J., Coosemans, J., Ryckeboer, J. (2003). Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environmental Pollution, 125(3), 361-368.
Vasudevan, N., Rajaram, P. (2001). Bioremediation of oil sludge-contaminated soil. Environment International, 26(5-6), 409-411.
Wilson, J. T., Enfield, C. G., Dunlap, W. J.;Cosby, R. L., Foster, D. A., Baskin, L. B. (1981). Transport and fate of selected organic pollutants in a sandy soil. Journal Environmental Quality, 10(4), 501-506.
Zucconi, F., Bertoldi, M. d. (1987). Compost specifications for the production and characterization of compost from municipal solid waste. Compost, Production, Quality and use, 30-50.
童翔新、林仕明、王家祥、歐育憲、葉奕宏、陳欽昭 (1999),石化污染土壤之生物復育影響因子研究,中華民國環境工程學會,廢棄物處理技術研討會。
陶正綱 (1994),油品污染土壤及地下水之調查與整治案例介紹,地工技術,第45期,第93~107頁。
李貽華、徐慈鴻 (2004),多環芳香族化合物(PAH)與植物,行政院農業委員會農業藥物毒物試驗所技術專刊第132號。
林子傑 (2001),廚餘堆肥控制策略之探討,國立台灣大學生物產業機電工程學研究所,碩士論文。
林忠治 (2000),稻稈和豌豆苗頭製成的堆肥與其肥料性狀,國立台灣大學農業化學研究所,碩士論文。
高志明、蔡在堂、胡太龢、陳忠勳、葉琮裕 (2006),評估以加強式生物處理整治受燃料油污染土壤之成效,中華民國環境工程學會,土壤與地下水研討會。
經濟部工業局、財團法人台灣綠色生產力基金會 (2005),堆肥技術與設備手冊及案例彙編,工業局出版。
簡宣裕 (1999),製造堆肥時材料的碳氮比及水分含量之調整,堆肥製造技術,農業試驗所永續發展協會出版。
謝景松、黃正義 (1991),固體廢棄物處理,淑馨出版社,修正三版。
中崎清彥 (1995),コンポスト化過程における微生物資材の添加效果,1995年9月1日於台灣畜產試驗所演講稿。
張富貴 (2007),利用負壓廂式醱酵槽製作廚餘堆肥製作之研究,國立高雄海洋科技大學海洋環境工程研究所,碩士論文。

鄭幸雄、林大成、廖翊廷、潘柏岑、方彥程、黃良銘 (2006),生物土堆翻耕法應用於油污染土壤整治之案例研究,中華民國環境工程學會,土壤與地下水研討會。
鄭幸雄、高俊璿、張儷馨、潘柏岑、謝宗霖、黃良銘 (2008),高濃度石油碳氫化合物的三成份分析與生物可降解性研究,中華民國環境工程學會,土壤與地下水研討會。
陳啟祥 (1999),土壤受油品污染之生物整治技術與問題評估,土壤污染防治研討會。
蔡國聖、王夢熊、朱振坤、江山鑫 (2009),以生物方法處理受 TPH 污染土壤之效率評估分析,基隆市環境保護局。
宋鴻愷 (2007),廚餘堆肥化過程降解柴油及燃料油之研究,國立高雄海洋科技大學海洋環境工程研究所,碩士論文。
王西華、李勝隆、許金土、張茂盛 (1998),玉米穗軸之固態醱酵,中國土木水利工程學會第三屆廢棄物處理技術研討會。
王仲龍 (2005),廚餘堆肥化處理技術之研究,國立高雄海洋科技大學海洋環境工程研究所,碩士論文。
巫慶珊 (2004),食品廢棄物好氧生物降解之化學及生物特性研究,國立高雄第一科技大學環安所,碩士論文。
吳國雄 (2003),研究食品廢棄物好氧生物降解 (堆肥化),國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文。
翁震炘 (1998),禽畜糞堆肥處理技術與獸醫公共衛生之探討,國立中興大學獸醫學研究所,碩士論文。
郁儀豪 (2003),蔗渣堆肥中嗜高溫菌之分離與應用,國立台灣大學環境工程學研究所,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔