(54.236.58.220) 您好!臺灣時間:2021/03/08 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳秉宸
研究生(外文):Ping Chen Wu
論文名稱:氧化鋅陶瓷材料備製濕度感測器特性之研究
論文名稱(外文):Preparation and applications of zinc oxide humidity sensor
指導教授:楊誌欽楊誌欽引用關係
指導教授(外文):Chih Chin Yang
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:80
中文關鍵詞:感測器粗糙度靈敏度氧化鋅感測層
外文關鍵詞:humidity sensors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以真空蒸鍍系統(vacuum coating system)與磁控濺鍍系統(RF/DC sputter deposition system)的方式,來製備一新架構濕度感測器。傳統阻抗式濕度感測器感測層大多在電極下方,其感測面積大多被電極覆蓋兒無法接觸水氣而失去作用,本研究提出在電極上方增加一感測層來增加感測面積為研究方向。以矽晶圓(100)為基板使用氧化鋅粉末加熱成長一層陶瓷薄膜做為感測層。接著以鋁做為指狀電極材料。隨著成長壓力的改變,陶瓷薄膜表面有著粗糙度不同的表現,為影響感測效率的因素之一。初步挑選表面最為粗糙的陶瓷薄膜製作新架構濕度感測器。將原鋁電極上再成長一氧化鋅感測層,以真空蒸鍍系統與磁控濺鍍系統作為對照組,改變壓力參數(10-3~10-5torr),初步探討薄膜表面對感測品質的影響。從實驗結果可以看出初步的實驗結果非常理想,增加第二層感測層達到了良好靈敏度(6Ω-300kΩ)與良好遲滯效應,量測結果得知表面越粗糙度對於反應速率的影響大。此架構在電阻量測上有最大的變化,所以歸類為電阻式濕度感測器。
In this study, the humidity sensors can be improved by vacuum coater system and RF/DC sputter deposition system, in which, ZnO thin film was growth on the Si(100)substrates. The first structure is the growth of MOS (Al/ZnO/Si) humidity sensor. The second device is fore growth of OMOS (ZnO/Al/ZnO/Si) humidity sensor. The film is completed by using vacuum coater system and DC/RF magnetron sputtering technique. The fabrication of electrode is also done by using vacuum coater system. The result show that of the low growth pressure the secondary layer growth of ZnO thin film is with (002) XRD peak obviously. That is the reason for increasing sensitivity of the sensor. The larger contact area is also improvement of the more sensitive response so as to the better hysteresis. In preliminary experiments the ZnO humidity sensor have been significantly improved. The ZnO humidity sensors at resistance measurements are with the most significant variety. ZnO humidity sensors are significantly affected in the resistance value with adding moisture and the electrode length in the same side of the chip. In summary, this sensor is resistive humidity sensor.
中文摘要 I
Abstract II
Acknowledgement III
Contents IV
Table captions VIII
Figure captions IX
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Research motivation and objectives 1
Chapter 2 Literature review 2
2.1 ZnO property 2
2.2 Growth technology of zinc oxide 3
2.3 Applications of zinc oxide 4
2.4 Humidity sensor 5
2.4.1 Operation range 5
2.4.2 Humidity characteristic 6
2.4.3 Sensitivity 6
2.4.4 Response time 6
2.4.5 Hysteresis effect 6
2.5 Types of humidity sensors 7
2.5.1Electrolyte humidity sensors 7
2.5.2 Polymer humidity sensors 7
2.5.3 Ceramic humidity sensors 8
2.5.4 Capacitive Ceramic humidity sensors 9
2.5.5 Resistive polymer humidity sensors 10
Chapter 3 Experiment and measurement 12
3.1 Experiments 12
3.1.1 MOS structure 13
3.1.2 OMOS structure 15
3.2 Experiment apparatus 17
3.2.1 Vacuum evaporating system 17
3.2.2 DC/RF magnetron sputtering 20
3.2.3 Exposure and photolithography equipment 21
3.3 Measurement apparatus 22
3.3.1 Current-Voltage measurement apparatus 22
3.3.2 Hall effect measurement system and four point probe meter 23
3.3.3 Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) 23
3.3.4 X-ray diffraction (XRD) 24
3.3.5 Atomic force microscope (AFM) 25
3.3.6 Photoluminescence (PL) 26
3.3.7 Environmental testing system 27
Chapter 4 Results and discussion 28
4.1 Analysis of ZnO thin films material for MOS structure 28
4.1.1 Scanning electron microscope (SEM) 28
4.1.2 X-ray diffraction (XRD) measurent 30
4.1.3 Photolumine scence (PL) 32
4.1.4 Hall effect measurement 33
4.2 The OMOS structure of ZnO thin films material analysis 33
4.2.1 Scanning electron microscope (SEM) measurement 33
4.2.2 X-ray diffraction (XRD) 36
4.2.3 Photoluminescence (PL) 38
4.2.4 Hall effect measurement system 38
4.2.5 Energy dispersive spectrometer (EDS) 39
4.2.6 Atomic force microscope (AFM) 40
4.3 Zinc oxide humidity sensor 42
4.3.1 Current-voltage measurement 42
4.3.2 RCL measurements of ZnO devices 43
4.3.2.1 Resistance measurement 43
4.3.2.2 Capacitor measurement 47
4.3.2.3 Inductance measurement 51
Chapter 5 Conclusions 55
References 56
Published list 61
中文目錄
中文摘要 63
第一章 簡介 64
第二章 文獻探討 65
第三章 實驗與量測 66
第四章 研究與討論 67
第五章 結論 68
[1]H.L Hartnagel, A.K Jain and C. Jagadish, “Semiconducting transpraent thin films”, Published by Institute of physics publication, 1995 Page(s):17.
[2]A. Tubtimtae, S. Choopun, A. Gardchareon, P. Mangkorntong, N. Mangkorntong, “Ethanol sensor based on Au-doped ZnO nanostructures”, IEEE Trans Nanotechnol, 2007 Page(s):207 – 210.
[3]T.J Hsueh, C.L Hsu, S.J Chang, Y.R Lin, S.P Chang, Y.Z Chiou, T.S Lin, I.C Chen, ”Crabwise ZnO Nanowire UV Photodetector Prepared on ZnO:Ga/Glass Template”, IEEE Trans Nanotechnol, 2007 Page(s):595 – 600.
[4]C.L Hsu, S.J Chang, C.H Hui, R.L Yan, J.H Chorng, Y.K Tseng, I.C hen, ”Vertical single-crystal ZnO nanowires grown on ZnO:Ga/glass templates”, Nanotechnology, IEEE Transactions, 2005 Page(s):649 – 654.
[5]J.S Huang, C.F Lin, ”Controlled Growth of Zinc Oxide Nanorod Array in Aqueous Solution by Zinc Oxide Sol-Gel Thin Film in Relation to Growth Rate and Optical Property”, Nanotechnology IEEE Conference, 2008 Page(s):135 - 138.
[6]K.W Liu, J.G Ma, J.Y Zhang, Y.M Lu, D.Y Jiang, B.H Li, D.X Zhao, Z.Z Zhang, B. Yao, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film”, Solid-State Electronics, 2007 Page(s): 75-76.
[7]B.M Kulwicki, “Humidity sensor”, J.Am. Ceram. Soc, 1991 Page(s): 697-708.
[8]P.G Su, Y.L Sun, C.C Lin,”Humidity sensor based on PMMA simultaneously doped with two different salts”, Sensors and Actuators, 2006 Page(s): 883-886.
[9]F.W Dunmore, “An electrometer and its application to radio meteororgraphy”, J. Res. Nat. Bur. Std. 1938 Page(s):723-744.
[10]M.J Yang, Y.Li, Camaioni, G.C Miceli, A. Marteiil and G. Ridolfi,”Polymer electrolytes as humidity sensor: progress in Improving an impedance device”, Sensors and Actuators, 2002 Page(s):229-234.
[11]一之瀨昇,小林哲二(著者),陳克紹,曹永偉(編譯),"感測器原理與應用技術"全華科技圖書,台北市,(1986).
[12]M. Matsuguchi, M. Shinmoto, Y. Sadaoka, T. Kuroiwa and Y. Sakia,”Effect of the degree of cross-kinking on the characteristics of a PVCA capacitive-type humidity sensor”, Sensors and Actuators, 1996 Page(s):349-355.
[13]R. Cecilia, B.Olimpiu, P. Nicolae, L.Andrei, C. Emil, M. Ionel, “A capacitive-type humidity sensor using crosslinked poly(methy1 methacrylate-co-(2hydroxypropyl)-methacrylate)”, Sensors and Actuators , 1997 Page(s):710-713.
[14]T. Hubert, “Humidity-Sensing Materials“, MRS Bulletin, 1999 Page(s): 49-54.
[15]M.T Chen, J.M Ting,”Sputter deposition of ZnO nanowires/nanorods on Si”, Thin Solid Films, 2006 Page(s):250 -254.
[16]H. Jorke, H. Kibbel, K. Strohm, and E. Kasper., “Forward-bias characteristics of Si bipolar junctions grown by molecular beam epitaxy at low temperatures”, Applied Physics Letters, 1993, Page(s):2408-2410.
[17]Z.D. Sha, X.M. Wu, L.J. Zhuge, “The structure and optical properties of SiC film on Si (111) substrate with a ZnO buffer layer by RF-magnetron sputtering technique”, Physics Letters, 2006 Page(s):228–232.
[18]U. Ahmad , J.C Young, E.K Suh, A.Al Hajry, Y.B Hahn,” Evolution of ZnO nanostructures by non-catalytic growth process on steel alloy substrate: Structural and optical properties”, Current Applied Physics, 2008 Page(s): 798–802.
[19]E.M. Bachari, G.Baud, S.Ben Amor, M Jacquet, “Structural and optical properties of sputtered ZnO films”, Thin Solid Films, 1999 Page(s): 165.
[20]Ahmad Umar, Sang Hoon Kim, Yoon-Bong Hahn,” Formation of hierarchical ZnO nanostructures nanocombs Growth mechanism, structural and optical properties”, Current Applied Physics, 2008 Page(s):793–797.
[21]C.L Hsu, S.J Chang, H.C Hung, Y.R Lin, C.J Huang, Y.K Tseng, and I.C Chen, ” Vertical Single-Crystal ZnO Nanowires Grown on ZnO : Ga/Glass Templates”, IEEE Transactions on Nanotechnology, 2005 Page(s): 649-654.
[22]B.C. Yadav, R. Srivastava and C.D. Dwivedi, “Synthesis and characterization of ZnO–TiO2 nanocomposite and its application as a humidity sensor”, Philosophical Magazine, 2008 Page(s): 1113–1124.
[23]T. Seiyama, N. Yamazoe, H. Arai, “Ceramic humidity sensors “, Sensors and Actuators, 1983 Page(s):85-96.
[24]Y. Shu, Y. Zhang, K. Yu, ”Humidity sensing properties of zinc oxide nanorod and nanobelt films”, International Conference on Mechatronics and Automation, 2006 Page(s):2095-2099.
[25]C. Roman, O. Bodea, N. Prodan, A. Levi, E. Cordosa, “A capacitive-type humidity sensor usingcrosslinked poly(methy1methacrylate-co-(2hydroxypropyl)-methacrylate)”, Sensors and Actuators, 1995 Page(s):710-713.
[26]X. Zhou, T. Jiang, J. Zhang, J. Zhu, X. Wang, Z. Zhu, “A Quartz tuning fork-based humidity sensor using Nanocrystalline Zinc oxide thin film coatings”, IEEE International Conference, 2006Page(s):1152-1157.
[27]T. Jiang, X. Zhou, J. Zhang, Y. Shi, T. Luo, “Porous Silicon humidity sensor”, IEEE International Conference, 2006Page(s):1158-1162.
[28]Y. Shu, Y. Zhang, K. Yu, “Humidity sensing properties of zinc oxide nanorod and nanobelt films”, IEEE International Conference, 2006Page(s):2095-2099.
[29]N. Zhang, K. Yu, Z. Zhu, D. Jiang, “Synthesis and humidity sensing properties of feather-like ZnO nanostructures with macroscale in shape”, Sensors and Actuators, 2007Page(s):245-250.
[30]Y.W John, T.W Yeow, L.Yih Chen, “Synthesis of Aligned Zinc Oxide Nanorods for Humidity Sensing”, 3rd International Conference on Sensing Technology, 2008Page(s):670-673.
[31]A. Erol, S. Okur, B. Comba, O. Mermerc, M.C Arıkan, “Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process”, Sensors and Actuators, 2009Page(s):174-180.

[32]W. Wang, Z. Li, L. Liu, H. Zhang, W. Zheng, Y. Wang, H. Huang, Z. Wang, C.Wang, ”Humidity sensor based on LiCl-doped ZnO electrospun nanofibers”, Sensors and Actuators 2009Page(s):404-409.

[33]Q. Qi, T. Zhanga, Q. Yuc, R. Wang, Y. Zeng, L. Liu, H. Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing”, Sensors and Actuators , 2009Page(s):638-64.

[34]S.P Chang, S.J Chang, C.Y Lu, M.J Li ,C.L Hsu, Y.Z Chiou, T.J Hsueh, I.C Chen, “A ZnO nanowire-based humidity sensor”, Elsevier Science, 2010Page(s):772-778.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張有恆、王東琪(2002),〈航空站營運績效評估之研究-以亞太地區國際機場為例〉,《民航季刊》,第4卷第1期,頁89-107。
2. 許崇源(2001),〈我國非營利組織責任及透明度提升之研究-德爾菲法之應用〉,《中山管理評論》,第0卷第0期,頁541-566。
3. 張有恆、徐村和、陳曉玲(1997),〈航空站區位選擇評估程序之研究〉,《運輸計劃季刊》,第26卷第1期,頁37-68。
4. 曹琬凌、彭玉賢、林珍瑋(2008),〈公共廣電問責體系初探:以台灣公廣集團公共價值評量指標建構為例〉,《新聞學研究》,第96期,頁129-186。
5. 吳政達(2005),〈我國地方政府層級教育課責系統建構之評估:模糊德菲法之應用〉,《國立政治大學教育與心理研究》,第28卷第4期,頁645-665。
6. 李允傑(2007),〈公部門績效評估技術與指標〉,《研考雙月刊》,第31卷第二期,頁26-39。
7. 李允傑(1999),〈公部門之績效評估〉,《人事月刊》,第29卷第4期,頁12-20。。
8. 王毓仁(2000),〈公部門績效指標的設計與運用〉,《人力發展月刊》,第82期,頁35-45。
9. 王小璘、吳慧儀(2001),〈都市廊道景觀生態功能評估架構之研究-以台中市東光園道為例〉,《造園學報》,第7卷第2期,頁99-119。
10. 劉錦龍(1994),〈科技研發績效評估之探討〉,《研考雙月刊》,第18卷第5期,頁21-31。
11. 劉偉傑(2008),〈博物館績效評量探討:以紐西蘭國家博物館及國立故宮博物院為例〉,《博物館學季刊》,第22卷第4期,頁109-125。
12. 劉順仁(2004),〈論平衡計分卡的最新發展及其在公共部門的應用〉,《國家政策季刊》,第3卷第2期,頁79-106。
13. 劉宜君、傅立葉(2009),〈以政策德菲法建構健保政策評估指標之研究〉,《國家與社會》,第6期,頁103-163。
14. 張維容、鍾信成(2009),〈以德菲法建立醫院內部評估社區健康服務成效之指標〉,《澄清醫護管理雜誌》,第5卷第1期,頁45-53。
 
系統版面圖檔 系統版面圖檔