(34.237.124.210) 您好!臺灣時間:2021/03/02 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗倫
研究生(外文):Chung Lun Tsai
論文名稱:二氧化鈦材料備製濕度感測器特性之研究
論文名稱(外文):Fabrication and properties of titanium dioxide based humidity sensorFabrication and properties of titanium dioxide based humidity sensorFabrication and properties of titanium dioxide based humidity sensor
指導教授:李致頤李致頤引用關係楊誌欽楊誌欽引用關係
指導教授(外文):Jenny Chih Yu LeeChih Chin Yang
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:68
中文關鍵詞:濕度感測器射頻濺鍍二氧化鈦
外文關鍵詞:humidity sensorRF sputteringtitanium dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以射頻磁控濺鍍(RF sputtering)的方式,來備製一濕度感測器。並以二氧化鈦作為濕度感測元件之感測材料,最後再利用蒸鍍的方式製作一對指狀型電極以製得所要的感測元件。本文研製出兩種不同結構之濕度感測器元件,包括Al/TiO2/Si (MOS)和TiO2/Al/TiO2/Si (OMOS),這兩種結構之感測器元件的響應時間分別為120秒和50秒。在本實驗探討的製程參數範圍內,當二氧化鈦薄膜成長於400℃時,其感測器有最小的遲滯現象及最短的反應時間。以LCR meter測試後,溫度於27℃的條件下,濕度從90%RH變化至30%RH回復時間需30秒左右。
In environmental control, humidity detection is very important. In particular, precise humidity detection is necessary in the industry of high technology and manufacturing industries. Therefore, the sensors changed the structure to improve the sensing effect. In this study, the humidity sensors were produced by using the RF sputtering. TiO2 films as sensing membranes of the humidity sensor. Interdigital electrode was produced by thermal evaporation system. This thesis fabricates two kinds of sensor structure devices including Al/TiO2/Si (MOS), TiO2/Al/TiO2/Si (OMOS). The response time for these sensor are 120s and 50s respectively. The TiO2 thin film were prepared at growth temperature of 400℃, it shows improvement to the hysteresis and response time of sensors. The recovery time required about 30 seconds in the range of 90%-30% RH at 27℃.
Contents
摘要 I
Abstract II
Acknowledgement III
Contents IV
List of Table IX
Figure Caption X
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Research motivation and objectives 4
1.3 Outline of dissertation 5
Chapter 2 Literature review 6
2.1 Introduction of Titanium Dioxide 6
2.2 Applications of titanium dioxide 8
2.3 Materials of humidity sensor 8
2.4 Principle of humidity sensor 10
2.5 Types of humidity sensors 11
2.5.1 Ceramic humidity sensors 11
2.5.2 Polymer humidity sensors 12
2.5.3 Electrolyte humidity sensors 13
Chapter 3 Experiment 14
3.1 Experimental design 14
3.1.1 Experiment flow 14
3.1.2 Substrate cleaning procedures 16
3.1.3 Fabrication of titanium dioxide membrane 16
3.1.4 Preparation of titanium dioxide humidity sensor 17
3.2 Experiment apparatus 20
3.2.1 DC/RF magnetron sputtering 20
3.2.2 Spin coater and exposure system 21
3.2.3 Thermal evaporation system 22
3.3 Measurement apparatus 24
3.3.1 Scanning electron microscope (SEM) and energy dispersive spectrometers (EDS) 24
3.3.2 X-ray diffraction (XRD) 25
3.3.3 Four point probe measurements and Hall measurement system 25
3.3.4 Raman spectrum 26
3.3.5 Atomic force microscope (AFM) 27
3.3.6 Environment test of sensor in system 27
Chapter 4 Results and discussion 29
4.1 Results and analysis of TiO2 thin films 29
4.1.1 X-ray diffraction (XRD) analysis 29
4.1.2 Surface morphology analysis 30
4.1.3 Energy dispersive spectrometers (EDS) analysis 35
4.1.4 TiO2 layer analysis for Raman spectrum 37
4.1.5 Atomic force microscope (AFM) analysis 38
4.1.6 Al/TiO2/Si structure of the humidity sensing characteristics 38
4.2 Analysis of double layer TiO2 films 42
4.2.1 X-ray diffraction (XRD) analysis 42
4.2.2 Surface morphology analysis 43
4.2.3 Energy dispersive spectrometers (EDS) analysis 44
4.2.4 Raman spectrum system analysis 44
4.2.5 TiO2/Al/TiO2/Si structure of the humidity sensing characteristics 46
4.3 TiO2 humidity sensing device 47
4.3.1 Resistance measurement 47
4.3.2 Capacitance measurement 51
4.3.3 Inductance measurement 54
Chapter 5 Conclusions 57
References 58
Publication List 62
中文目錄
摘要 63
第一章 介紹 64
第二章 文獻回顧 65
第三章 實驗方法 66
第四章 結果與討論 67
第五章 結論 68
[1] T. Hubert , “Humidity-Sensing Materials”, MRS Bulletin, vol.24, pp.49-54, 1999.
[2] B. M. Kulwicki, “Humidity Sensors”, Journal of the American Ceramic Society, vol.74, pp.697–708, 1991.
[3] P. G. Su, Y. L. Sun and C. C. Lin, “Humidity sensor based on PMMA simultaneously doped with two different salts”, Sensors and Actuators B, vol.113, pp.883–886, 2006.
[4] Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose and S. A. Akbar, “Aluminum-doped TiO2 nano-powders for gas sensors”, Sensors and Actuators B, vol.124, pp.111–117, 2007.
[5] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, vol.48, pp.53-229, 2003.
[6] Z. Wang, D. Xia, G. Chen, T. Yang and Y. Chen, “The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature”, Materials Chemistry and Physics, vol.111, pp.313–316, 2008.
[7] D. Dzibrou , A.M. Grishin and H. Kawasaki, “Pulsed laser deposited TiO2 films: Tailoring optical properties” Thin Solid Films, vol.516, pp.8697–8701, 2008.
[8] I. A. Al-Homoudi, J. S. Thakur, R. Naik, G. W. Auner and G. Newaz, “Anatase TiO2 films based CO gas sensor: Film thickness, substrate and temperature effects”, Applied Surface Science, vol.253 pp.8607–8614, 2007.
[9] H. Tang, K. Prasad, R. Sanjinés and F. Lévy, “TiO2 anatase thin films as gas sensors”, Sensors and Actuators B, vol.26, pp.71-75, 1995.
[10] M. F. Hossain, S. Biswas, T. Takahashi, Y. Kubota and A. Fujishima, “Investigation of sputter-deposited TiO2 thin film for the fabrication of dye-sensitized solar cells”, Thin Solid Films, vol.516, pp.7149–7154, 2008.
[11] H. Aoki, Y. Azuma, T. Asaka, M. Higuchi, K. Asaga and K. Katayama, “Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li2O and V2O5”, Ceramics International, vol.34, pp.819–822, 2008.
[12] V. Štengl, S. Bakardjieva and N. Murafa, “Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles”, Materials Chemistry and Physics, vol.114, pp.217–226, 2009.
[13] A. Welte, C. Waldauf, C. Brabec and P. J. Wellmann, “Application of optical absorbance for the investigation of electronic and structural properties of sol–gel processed TiO2 films”, Thin Solid Films, vol.516, pp.7256–7259, 2008.
[14] W. P. Tai and J. H. Oh, “Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films”, Sensors and Actuators B, vol.85, pp.154-157, 2002.
[15] C. T. Wang, C. L. Wu, I. C. Chen and Y. H. Huang “Humidity sensors based on silica nanoparticle aerogel thin films”, Sensors and Actuators B, vol.107, pp.402–410, 2005.
[16] J. G. Lee and S. P. Lee, “Impedance characteristics of carbon nitride films for humidity sensors”, Sensors and Actuators B, vol.117, pp.437–441, 2006.
[17] J. Wang, M. Y. Su, J. Q. Qi and L. Q. Chang, “Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors”, Sensors and Actuators B, vol.139, pp.418–424, 2009.
[18] T.M. Racheva, G.W. Critchlow, “SnO2 thin films prepared by the sol-gel process”, Thin Solid Films, vol.292, pp.299-302, 1997.
[19] J. Yuk and T. Troczynski, “Sol–gel BaTiO3 thin film for humidity sensors”, Sensors and Actuators B, vol.94, pp.290–293, 2003.
[20] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng and L. Luo, “Zinc oxide nanorod and nanowire for humidity sensor”, Applied Surface Science, vol.242, pp.212–217, 2005.
[21] W. H. Tao, C. L. Hsu, L. Y. Sung, C. C. Hung and T. W. Chung, “The humidity sensing properties of organic-inorganic (AMPS/SiO2) hybrid materials”, IEEE Conferences, vol.1, pp.641 – 646, 2002.
[22] Y. C. Yeh, T. Y. Tseng and D. A. Chang, “Electrical properties of porous titania ceramic humidity sensors”, J. Am. Ceram. Soc., vol.72, pp.1472-1475, 1989.
[23] E. Traversa, “Ceramic sensor for humidity detection: the state of the art and future developments”, Sensors and Actuators B, vol.23, pp.135-156, 1995.
[24] Y. Sakai, “Humidity sensors using chemically modified polymeric materials”, Sensor and Actuators B, vol.13, pp.82-85, 1993.
[25] Y. Sakai, Y. Sadaoka, M. Matsuguchi and H. Sakai, “Humidity sensor durable at high using simultaneously crosslinked and quaternized poly(chloromethyl styrene)”, Sens. Actuators B, vol.25, pp.689-691, 1995.
[26] M. J. Yang, Y. Li, N. Camaioni, G. C. Miceli, A. Martelli and G. Ridolfi, “Polymer electrolytes as humidity sensors: progress in improving an impedance device”, Sens. Actuators B, vol.86, pp.229-234, 2002.
[27] C. H. Wei, J. L. Ha, W. C. Sue, C. T. Lu, C. M. Chang, K. Y. Chen and K. R. Li, “Analysis of Photoelectric Property and Surface Morphology of Amorphous TiO2 at Different Substrate Temperatures by Sputtering”, IEEE Conference, pp.808–812, 2008.
[28] Y. H. Zhang, C. K. Chan, J. F. Porter, and W. Guo, “Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis”, J. Mater. Res, vol.13, pp.2602-2609, 1998.
[29] L. L. W. Chow, M. M. F. Yuen, P. C. H. Chan, A. T. Cheung, “Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias”, Sensors and Actuators B, vol.76, pp.310-315, 2001.
[30] E. Traversa, “Ceramic sensors for humidity detection: the state-of-the-art and future developments”, Sensors and Actuators B, vol.23, pp.135-156, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔