跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴秋雄
研究生(外文):Chiu-Hsiung Lai
論文名稱:具有預編碼的正交分頻多工系統峰均功率比值減低技術與載波頻率偏移估測
論文名稱(外文):Precoding Based PAPR Reduction Techniques and CFO Estimation for OFDM Systems
指導教授:郝敏忠
指導教授(外文):Miin-Jong Hao
學位類別:博士
校院名稱:國立高雄第一科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:137
中文關鍵詞:正交分頻多工系統峰均功率比值可調式圓形限制互補累積分布函數預編碼矩陣最小位元錯誤率符元互相干擾載波互相干擾自我消除
外文關鍵詞:OFDMPAPRACCCCDFprecoding matrixminimum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正交分頻多工技術已經被廣泛地運用在有線或無線通訊系統中,例如:數位用戶迴路,數位音訊廣播,數位電視廣播等等。正交分頻多工系統有兩個主要缺點:一是傳送端的高峰均功率比值,二是接收端的載波頻率偏移引起的載波互相干擾。本篇論文針對高峰均功率比值暨載波頻率偏移的問題提出下列幾個解決的方法。首先,本論文提出可調式圓形限制技術去克服高峰均功率比值的問題。可調式圓形限制技術利用調整訊號的星座圖去降低峰均功率比值,此演算法藉由設定峰值訊號的壓縮率與調整訊號在星座圖的位置,系統可具備有效的峰均功率比值降低與可容許的位元錯誤率。通常,有效的峰均功率比值降低常導致位元錯誤率的上升,本論文提出最佳的預編碼技術能同時具有優秀的峰均功率比值降低與最小的位元錯誤率。最佳的預編碼矩陣可藉由我們提出的方法而產生。論文已證明:當預編碼矩陣的奇異值皆為1時,是最佳的預編碼矩陣其中之一。藉由數值模擬證明我們提出的方法能有效地解決高峰均功率比值的問題。接著,為了消除載波頻率偏移引起的載波互相干擾,本論文提出多階的載波互相干擾自我消除法與具有預編碼技術的訓練基礎的載波頻率偏移估測法。前者可藉由多階式執行的方法而得到良好的載波互相干擾的消除且不需改變訊號的峰值與傳輸功率。具有預編碼技術的訓練基礎載波頻率偏移估測法具備低的峰均功率比值與良好的載波頻率偏移估測性能。最後,藉由數值模擬證明我們提出的方法能有效地解決載波互相干擾與載波頻率偏移的問題。
Orthogonal frequency division multiplexing (OFDM) has been chosen in many wired and wireless applications, such as digital subscriber lines (DSL), digital audio broadcasting (DAB), digital video broadcasting (DVB), etc. The major drawbacks of OFDM systems are the high peak-to-average power ratio (PAPR) of transmitted OFDM signals at the transmitter end and carrier frequency offset (CFO) which causes inter-carrier interference (ICI) at the receiver end. In this dissertation, some algorithms were proposed to resolve the high PAPR and CFO problems. First, the Adjustable Circle Constraint (ACC) method is proposed to combat the problem of the high PAPR. The ACC scheme can reduce the PAPR with modifying the signal constellation. By setting the circle constraints with various circle centers, radii and compression ratios of the signal peak value on the constellation, excellent PAPR reduction and acceptable BER can be attained. In general, it is a tradeoff between the BER performance and PAPR performance in OFDM systems. Secondly, the optimal precoding matrix approach which can provide excellent performance for PAPR reduction and maintains the system error probability at the minimum concurrently is proposed. A systematic procedure in designing such an optimal precoding matrix is provided. It has been proven that the precoding matrix with all the singular values equal to 1 is one of the optimal matrices. Numerical results to verify the effects of the proposed algorithms in PAPR reduction are illustrated. To combat the effects of ICI caused by CFO, the multi-step ICI self-cancellation algorithm and the training-based CFO estimation algorithm are proposed. The former can be executed recursively to reach the required performance without amplifying the data symbols, which maintains the same transmitted power in any step of ICI self-canceling modulation. Then the training-based CFO estimation scheme for OFDM systems with the precoding scheme is proposed. The PAPR reduction and CFO estimation scheme are performed concurrently for the OFDM system. Finally, the numerical simulations are carried out for verifying the excellent effects in ICI cancellation and CFO compensations.
CONTENTS
Chinese Abstract ………………….……………….…….………..i
English Abstract ……………………….…………………..…..iii
Acknowledgements …………………………………………….……..v
Contents ………………………………………………….….……..vi
List of Tables…………………..…….…..……………………..xi
List of Figures …………………..…….……………….……..xii
List of Abbreviations ……………………………………….. xvii
CHAPTER 1 INTRODUCTION……………………………............. 1
1.1 Overview…………..…………………….……..……….….…1
1.2 Problem Statement and Literature Survey ……………...2
1.3 Objective and Organization of This Dissertation……..5
CHAPTER 2 PAPR REDUCTION TECHNIQUES AND FREQUENCY SYNCHRONIZATION TECHNIQUES …………...…..…..............8
2.1 OFDM Fundamentals..…………..……………..………………9
2.2 PAPR Problem in OFDM ……………........……………… 16
2.3 Multipath Channels ……………………..……..………… 22
2.4 Synchronization of OFDM Systems …………………….… 34
2.4.1 Synchronization Errors………………………… 34
2.4.2 Effects of Synchronization Errors ……….…35
2.5 PAPR Reduction Techniques………………………………… 40
2.6 ICI Cancellation and Compensation Techniques……....43
CHAPTER 3 PAPR REDUCTION OF OFDM SIGNALS USING ADJUSTABLE CIRCLE CONSTRAINT………….............................… 45
3.1 Introduction…………………...……......……........ 45
3.2 Adjustable Circle Constraint Algorithm ……………… 46
3.3 Simulation Results and Comparisons…………….……… 51
3.3.1 Simulation Results …………………………… 51
3.3.2 Computational Complexity……………………. 55
3.4 Summary………………..………………..……………….……58
CHAPTER 4 PRECODING FOR PAPR REDUCTION OF OFDM SIGNALS WITH MINIMUM ERROR PROBABILITY.... ......................59
4.1 Introduction ……………………………………………...…59
4.2 Precoding Techniques for OFDM Systems….…………... 60
4.3 Formulation and Optimum Solution……………………..…64
4.3.1 Necessary Condition on the Optimal Precoding Matrix….................................................65
4.3.2 Procedure for Designing the Minimum Error Probability Based Precoding Matrix………….…….………… 70
4.4 Simulations and Discussion ………………………..………72
4.4.1 Simulations over the AWGN Channel…………. 72
4.4.2 Simulations over Multipath Fading Channels 76
4.5 Summary……………………………….…………………… ....80
CHAPTER 5 MULTI-STEP ICI SELF-CANCELLATION SCHEME FOR OFDM SYSTEMS ................................................ 81
5.1 Introduction ..…..…………………………….......... 81
5.2 Effect of Carrier Frequency Offsets…………………… 81
5.3 M-Step ICI Self-Cancellation Procedure ……………… 83
5.4 Simulations and Discussion…………………………….… 87
5.5 Summary………………………….………………………...... 93
CHAPTER 6 CARRIER FREQUENCY OFFSET ESTIMATION WITH PRECODING……………………….……………………............ 94
6.1 Introduction…….………………………..………………….94
6.2 Training-based Carrier Frequency Offset Estimation Scheme for OFDM Systems with Precoding……………………… 94
6.3 Simulations and Discussion………………………….…….99
6.4 Summary…………………….………………………….....…101
CHAPTER 7 CONCLUSION AND FUTURE WORK…………...….....…106
REFERENCES…………………………………….………………….…109
APPENDIX A………..…………………………………..……..……127
APPENDIX B…………………………………………………....……129
PUBLICATION LIST………………….………………..…...………134
VITA………………….………………..……………………….……136
[1]R. van Nee, and R. Prasad, OFDM for Wireless Multimedia Communications, Norwood, MA: Artech House, 1999.
[2]ETSI EN 300 744 V1.4.1, Digital Video Broadcasting (DVB); Frame structure, channel coding and modulation for digital terrestrial television, Jan. 2001.
[3]ETSI EN 302 304 V1.1.1, Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals (DVB-H), Jun. 2004.
[4]GB 20600-2006, National Standard of P. R. China; Frame structure, channel coding and modulation for digital terrestrial television, Aug. 2006.
[5]Z. W. Zheng, Z. X. Yang, C. Y. Pan, and Y. S. Zhu, “Cutoff Rate and Outage Probability Performance Comparisons Between DVB-T and DMB-T Systems Under Mobile Multipath Channels,” IEEE Trans. Broadcast., vol. 49, pp. 390-397, Dec. 2003.
[6]R. van Nee, G. Awater, M. Morikura, H. Takanashi, M. Webster, and K. W. Halford, “New high-rate wireless LAN standards,” IEEE Commun. Mag., vol. 37, no. 12, pp. 82-88, Dec. 1999.
[7]A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, J. McGeehan, and P. Karlsson, “A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards,” IEEE Commun. Mag., vol. 40, no. 5, pp. 172- 180, May 2002.
[8]ETSI ETS 300 401, “Radio broadcasting systems: digital audio broadcasting (DAB) to mobile, portable and fixed receivers,” ETSI, Tech. Rep., Feb. 1995.
[9]ETSI TS 101980, “Digital radio mondiale (DRM): system specification,” ETSI, Tech. Rep., 2001.
[10]P. Shelswell, “The COFDM modulation system: the heart of digital audio broadcasting,” Electronics & Communication Engineering Journal, vol. 7, pp. 127-136, Jun. 1995.
[11]R. W. Chang, and R. A. Gibby, “A theoretical study of the performance of an orthogonal multiplexing data transmission scheme,” IEEE Trans. Commun., vol. 16, no. 4, pp. 527-540, Aug. 1968.
[12]T. Jiang, and Y. Wu, “An overview: peak-to-average power reduction techniques for OFDM signals”, IEEE Trans. Broadcast., vol. 54, no. 2, pp 257-268, Jun. 2008.
[13]S. H. Han, and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission”, IEEE Wireless Commun., vol. 54, no. 2, pp 56-65, Apr. 2005.
[14]T. Pollet, M. van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun., vol. 43, pp. 191-193, Feb. / Mar. / Apr. 1995.
[15]T. Jiang, and G. Zhu, “Component block coding for reduction in peak-to-average power ratio of OFDM signals,” IEEE Commun. Mag., vol. 43, pp. S17-S22, Sep. 2005.
[16]F. Abdelkefi, P. Duhamel, and F. Alberge, “A necessary condition on the location of pilot tones for maximizing the correction capacity in OFDM systems,” IEEE Trans. Commun., vol. 55, no. 2, pp. 356-366, Feb. 2007.
[17]S. Litsyn, and G. Wunder, “Generalized bounds on the crest-factor distribution of OFDM signals with applications to code design,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 992-1006, Mar. 2006.
[18]G. Yue, and X. Wang, “A hybrid PAPR reduction scheme for coded OFDM”, IEEE Wireless Commun., vol. 5, no. 10, pp 2712-2722, Oct. 2006.
[19]K. U. Schmidt, “On the peak-to-mean envelope power ratio of phase-shifted binary codes,” IEEE Trans. Commun., vol. 56, no. 11, pp. 1816-1823, Nov. 2008.
[20]K. U. Schmidt, “On cosets of the generalized first-order Reed-Muller code with low PMEPR,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 3220-3232, Jul. 2006.
[21]S. Y. Le Goff, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “A novel selected mapping technique for PAPR reduction in OFDM systems,” IEEE Trans. Commun., vol. 56, no. 11, pp. 1775-1779, Nov. 2008.
[22]O. Muta, and Y. Akaiwa, “Weighting factor estimation method for peak power reduction based on adaptive flipping of parity bits in Turbo-Coded OFDM systems,” IEEE Trans. Veh. Technol., vol. 57, no. 6, pp. 3551-3562, Nov. 2008.
[23]S. H. Han, and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335-341, Sep. 2004.
[24]C. L. Wang, and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005.
[25]C. L. Wang, and S. J. Ku, “Novel conversion matrices for simplifying the IFFT computation of an SLM-based PAPR reduction scheme for OFDM systems,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1903-1907, Jul. 2009.
[26]S. Y. L. Goff, S. S. Al-Samahi, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “Selected mapping without side information for PAPR reduction in OFDM,” IEEE Wireless Commun., vol. 8, no. 7, pp. 3320-3325, Jul. 2009.
[27]T. Jiang, W. Xiang, P. C. Richardson, J. Guo, and G. Zhu, “PAPR reduction of OFDM signals using partial transmit sequences with low computational complexity,” IEEE Trans. Broadcast., vol. 53, pp. 719-724, Sep. 2007.
[28]A. Ghassemi, and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161-1166, Mar. 2008.
[29]S. H. Han, and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Processing Lett., vol. 11, no. 11, pp. 887-890, Nov. 2004.
[30]A. Alavi, C. Tellambura, and I. Fair, “PAPR reduction of OFDM signals using partial transmit sequence: an optimal approach using sphere decoding,” IEEE Commun. Lett., vol. 9, no. 11, pp. 982-984, Nov. 2005.
[31]Y. Zhou, and T. Jiang, “A novel multi-points square mapping combined with PTS to reduce PAPR of OFDM signals without side information,” IEEE Trans. Broadcast., vol. 55, no. 4, pp. 831-835, Dec. 2009.
[32]J. Tellado, Peak to Average Power Reduction for Multicarrier Modulation, Ph. D. dissertation, Stanford Univ., 2000.
[33]D. W. Lim, H. S. Noh, J. S. No, and D. J. Shin, “Near optimal PRT set selection algorithm for tone reservation in OFDM systems,” IEEE Trans. Broadcast., vol. 54, no. 3, pp. 454-460, Sep. 2008.
[34]D. W. Lim, H. S. Noh, H. B. Jeon, J. S. No, and D. J. Shin, “Multi-stage TR scheme for PAPR reduction in OFDM signals,” IEEE Trans. Broadcast., vol. 55, no. 2, pp 300-304, Jun. 2009.
[35]S. B. Slimane, “Reducing the peak-to-average power ratio of OFDM signals through precoding,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 686-695, Mar. 2007.
[36]X. Zhu, G. Zhu, and T. Jiang, “Reducing the peak-to-average power ratio using unitary matrix transformation,” IET Commun., vol. 3, no. 2, pp. 161-171, Feb. 2009.
[37]M. J. Hao, and C. H. Lai, “Precoding for PAPR Reduction of OFDM Signals with Minimum Error Probability,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 120-128, Mar. 2010.
[38]B. S. Krongold, and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, pp. 258-268, Sep. 2003.
[39]Y. J. Kou, W. S. Lu, and A. Antoniou, “A new peak-to-average power-ratio reduction algorithm for OFDM systems via constellation extension,” IEEE Wireless Commun., vol. 6, no. 5, pp. 1823-1832, May 2007.
[40]Z. Yang, H. Fang, and C. Pan, “ACE with frame interleaving scheme to reduce peak-to-average power ratio in OFDM systems,” IEEE Trans. Broadcast., vol. 51, no. 4, pp. 571-575, Dec. 2005.
[41]J. Wang, B. Liu, and X. Zhou, “PCE algorithm for PAPR reduction in OFDM-ROF system,” IEEE Trans. on Consumer Electronics, vol. 55, no. 3, pp. 1078-1082, Aug. 2009.
[42]S. K. Deng, and M. C. Lin, “Recursive clipping and filtering with bounded distortion for PAPR reduction,” IEEE Trans. Commun., vol. 55, no. 1, pp. 227-230, Jan. 2007.
[43]U. K. Kwon, D. Kim, and G. H. Im, “Amplitude clipping and iterative reconstruction of MIMO-OFDM signals with optimum equalization,” IEEE Wireless Commun., vol. 8, no. 1, pp. 268-277, Jan. 2009.
[44]U. K. Kwon, D. Kim, K. Kim, and G. H. Im, “Amplitude clipping and iterative reconstruction of STBC/SFBC-OFDM signals,” IEEE Signal Processing Lett., vol. 14, no. 11, pp. 808-811, Nov. 2007.
[45]S. A. Aburakhia, E. F. Badran, and D. A. E. Mohamed, “Linear companding transform for the reduction of peak-to-average power ratio of OFDM signals,” IEEE Trans. Broadcast., vol. 55, pp. 155-160, Mar. 2009.
[46]T. Jiang, Y. Yang, and Y. H. Song, “Exponential companding technique for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast., vol. 51, pp. 244-248, Jun. 2005.
[47]T. Jiang, W. Yao, P. Guo, Y. Song, and D. Qu, “Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems,” IEEE Trans. Broadcast., vol. 52, pp. 268-273, Jun. 2006.
[48]X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Wireless Commun., vol. 3, no. 6, pp. 2030-2039, Nov. 2004.
[49]T. Jiang, and G. Zhu, “Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals”, IEEE Trans. Broadcast., vol. 50, no. 3, pp 342-346, Sep. 2004.
[50]N. Chen, and G. T. Zhou, “Superimposed training for OFDM: a peak-to-average power ratio analysis,” IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2277-2287, Jun. 2006.
[51]C. P. Li, and W. W. Hu, “Super-imposed training scheme for timing and frequency synchronization in OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 2, pp 574-583, Jun. 2007.
[52]P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994.
[53]M. Luise, and R. Reggiannini, “Carrier frequency acquisition and tracking for OFDM systems,” IEEE Trans. Commun., vol. 44, no. 11, pp. 1590-1598, Nov. 1996.
[54]J. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, pp. 1800-1805, Jul., 1997.
[55]M. F. Sun, J. Y. Yu, and T. Y. Hsu, “Estimation of carrier frequency offset wth I Q mismatch using pseudo offset injection in OFDM systems,” IEEE Trans. Circuit and Systems, vol. 55, no. 3, pp. 943–952, Apr. 2008.
[56]E. S. Shim, S. T. Kim, H. K. Song, and Y. H. You, “OFDM carrier frequency offset estimation methods with improved performance,” IEEE Trans. Broadcast., vol. 53, no. 2, pp. 567–573, Jun. 2007.
[57]D. D. Lin, P.A. Pacheco, T. J. Lim, and D. Hatzinakos, “Joint estimation of channel response, frequency offset, and phase noise in OFDM,” IEEE Trans. Signal. Process., vol. 54, no. 9, pp. 3542-3554, Sep. 2006.
[58]H. Zhou, A. V. Malipatil, and Y.F. Huang, “OFDM carrier synchronization based on time-domain channel estimates,” IEEE Wireless Commun., vol. 7, no. 8, pp. 2988-2999, Aug. 2008.
[59]A. Laourine, A. Stéphenne, and S. Affes, “A new OFDM synchronization symbol for carrier frequency offset estimation,” IEEE Trans. Signal Process., vol. 14, no. 5, pp.321–324, May 2007.
[60]J. W. Chen, Y. C. Wu, S. Ma, and T. S. Ng, “ML joint CFO and channel estimation in OFDM systems with timing ambiguity,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2436-2440, Jul. 2008.
[61]M. Morelli, and M. Moretti, “Integer frequency offset recovery in OFDM transmissions over selective channels,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5220-5226, Dec. 2008.
[62]N. L. Hung, L. N. Tho, and C. C. Ko, “RLS-based joint estimation and tracking of channel response, sampling, and carrier frequency offsets for OFDM,” IEEE Trans. Broadcast., vol. 55, no. 1, pp. 84–94, Mar. 2009.
[63]D. Toumpakaris, J. W. Lee, and H. L. Lou, “Estimation of integer carrier frequency offset in OFDM systems based on the maximum likelihood principle,” IEEE Trans. Broadcast., vol. 55, no. 1, pp. 95–108, Mar. 2009.
[64]F. Z. Merli, and G. M. Vitetta, “Iterative ML-based estimation of carrier frequency offset, channel impulse response and data in OFDM transmissions,” IEEE Trans. Commun., vol. 56, no. 3, pp. 497-506, Mar. 2008.
[65]M. Morelli, and M. Moretti, “Robust frequency synchronization for OFDM-based cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 7, no.12, pp. 5346-5355, Dec. 2008.
[66]T. Cui, and C. Tellambura, “Joint frequency offset and channel estimation for OFDM systems using pilot symbols and virtual carriers,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1193-1202, Apr. 2007.
[67]W. Zhang, X. G. Xia, and P. C. Ching, “Clustered pilot tones for carrier frequency offset estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 101-109, Jan. 2007.
[68]Y. H. You, K. T. Lee, and S. J. Kang, “Pilot-aided frequency offset tracking scheme for OFDM-based DVB-T,” IEEE Trans. Consumer Electronics, vol. 54, no. 3, pp. 1053-1058, Aug. 2008.
[69]F. Gao, T. Cui, and A. Nallanathan, “Scattered pilots and virtual carriers based frequency offset tracking for OFDM systems algorithms identifiability and performance analysis,” IEEE Trans. Commun., vol. 56, no. 4, pp. 619-629, Apr. 2008.
[70]K. T. Lee, and J. S. Seo, “Pilot-aided iterative frequency offset estimation for digital video broadcasting (DVB) systems,” IEEE Trans. Consumer Electronics, vol. 53, no. 1, pp. 11–16, Feb. 2007.
[71]D. Huang, and K. B. Letaief, “Enhanced carrier frequency offset estimation for OFDM using channel side information,” IEEE Trans. Wireless Commun., vol. 5, no. 10, pp. 2784-2793, Oct. 2006.
[72]H. Minn, X. Fu, and V. K. Bhargava, “Optimal periodic training signal for frequency offset estimation in frequency-selective fading channels,” IEEE Trans. Commun., vol. 54, pp. 1081-1096, Jun. 2006.
[73]U. Tureli, H. Liu, and M. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun., vol. 48, pp. 1459-1461, Sep. 2000.
[74]T. Roman, S. Visuri, and V. Koivunen “Blind frequency synchronization in OFDM via diagonality criterion,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3125–3135, Aug. 2006.
[75]S. Attallah, Y. Wu and J.W.M. Bergmans, “Low complexity blind estimation of residual carrier offset in orthogonal frequency division multiplexing based,” IET Commun., vol. 1, pp. 604–611, Aug. 2007.
[76]J. AI-Dweik, “A novel non-data-aided symbol timing recovery technique for OFDM systems,” IEEE Trans. Commun., vol. 54, no. 1, pp. 37-40, Jan. 2006.
[77]H. Lin, and H. M. S. B. Senevirathna, “Blind estimation of carrier frequency offset and DC offset for OFDM systems,” IEEE Trans. Commun., vol. 56, no. 5, pp. 704-707, May 2008.
[78]X. N. Zeng, and A. Ghrayeb, “A blind carrier frequency offset estimation scheme for OFDM systems with constant modulus signaling,” IEEE Trans. Commun., vol. 56, no. 7, pp. 1032-1037, Jul. 2008.
[79]A. Al-Dweik, R. Hamila, and M. Renfors, “Blind estimation of large carrier frequency offset in wireless OFDM systems,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 965-968, Mar. 2007.
[80]G. D. Pantos, “A numerical technique for blind estimation of carrier frequency offset in OFDM signals,” IEEE Trans. Broadcast., vol. 52, no. 4, pp 566-569, Dec. 2006.
[81]W. L. Chin, and S. G. Chen, “A Blind synchronizer for OFDM systems based on SINR maximization in multipath fading channel8,” IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 625-635, Feb. 2009.
[82]F. Gao, and A. Nallanathan, “Blind maximum likelihood CFO estimation for OFDM systems via polynomial rooting,” IEEE Signal Processing Lett., vol. 13, no. 2, pp. 73-76, Feb. 2006.
[83]R. H. Mo, Y. H. Chew, T. T. Tjhung, and C. C. Ko, “An EM-based semiblind joint channel and frequency offset estimator for OFDM systems over frequency-selective fading channels,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 3275-3282, Sep. 2008.
[84]F. Horlin, A. Bourdoux, and L. V. D. Perre, “Low-complexity EM-based joint acquisition of the carrier frequency offset and IQ imbalance,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2212-2220, Jun. 2008.
[85]X. N. Zeng, and A. Ghrayeb, “CFO estimation schemes for differential OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 124-129, Jan. 2009.
[86]H. Liu, and U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett., vol. 2, no. 4, pp. 104-106, Apr. 1998.
[87]D. Huang, and K.B. Letaief, “Carrier frequency offset estimation for OFD M systems using null subcarriers,” IEEE Trans. Commun., vol. 54, no. 5, pp. 813-823, May 2006.
[88]X. Ma, C. Tepedelenlioglu, G. B. Giannakis, and S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: Identifiability, algorithms, and performance,” IEEE J. Sel. Areas Commun., vol. 19, no. 12, pp. 2504-2515, Dec. 2001.
[89]T. M. Schmidl, and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
[90]M. Morelli, and U. Mengali, “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Lett., vol. 3, no. 3, pp. 75-77, Mar. 1999.
[91]B. Chen, “Maximum likelihood estimation of OFDM carrier frequency offset,” IEEE Signal Processing Lett., vol. 9, no. 4, pp. 123-126, Apr. 2002.
[92]H. Liu, and U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett., vol. 2, no. 4, pp. 104-106, Apr. 1998.
[93]J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, pp. 1800-1805, Jul. 1997.
[94]H. Chen, and G. J. Pottie, “A comparison of frequency offset tracking algorithms for OFDM,” in Proc. GLOBECOM’03, San Francisco, CA, vol. 2, pp. 1069-1073, Dec. 2003.
[95]B. Park, H. Cheon, E. Ko, C. Kang, and D. Hong, “A blind OFDM synchronization algorithm based on cyclic correlation,” IEEE Signal Processing Lett., vol. 11, no. 2, pp. 83-85, Feb. 2004.
[96]M. J. Hao, “Decision feedback frequency offset estimation and tracking for general ICI self-cancellation based OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 2, pp 560-566, Jun. 2007.
[97]M. Gudmundson, and P. O. Anderson, “Adjacent channel interference in an OFDM system,” Proc. 46th IEEE Vehicular Technology Conf., pp. 918-922, Apr. 1996.
[98]C. Muschallik, “Improving an OFDM reception using an adaptive Nyquist windowing,” IEEE Trans. Consum. Electron., vol. 42, no. 3, pp. 259-269, Aug. 1996.
[99]S. Muller-Weinfurtner, and J. Huber, “Optimum Nyquist windowing for improved OFDM receivers,” in Proc. IEEE Global Telecommunications Conf., pp. 711-715, Nov. 2000.
[100]Y. Zhao, and S. G. Häggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun., vol. 49, pp. 1185-1191, Jul. 2001.
[101]J. Armstrong, “Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM,” IEEE Trans. Commun., vol. 47, pp. 365-369, Mar. 1999.
[102]M. J. Hao, and C. H. Lai, “The Recursive Multi-Step ICI Self-Cancellation Scheme for OFDM Systems,” International Journal of Electrical Engineering, vol. 14, pp.325-330, 2007.
[103]A. Seyedi, and G. J. Saulnier, “General self-cancellation scheme for OFDM systems,” IEEE Trans. Veh. Technol., vol. 54, pp. 198-210, Jan. 2005.
[104]T. D. Chiueh, and P. Y. Tsai, OFDM Basedband Receiver Design for Wireless Communications. Singapore, WILEY, 2007.
[105]T. Jiang, and Y. Wu, “An overview: peak-to-average power reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp 257-268, Jun. 2008.
[106]S. Shepherd, J. Orriss, and S. Barton, “Asymptotic limits in peak envelope power reduction by redundant coding in orthogonal frequency-division multiplex modulation,” IEEE Trans. Commun., vol. 46, no. 1, pp. 5–10, Jan. 1998.
[107]R. van Nee, and A. de Wild, “Reducing the peak to average power ratio of OFDM,” in Proceedings of the 48th IEEE Semiannual Vehicular Technology Conference, vol. 3, pp. 2072–2076, May 1998.
[108]H. Ochiai, and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, no. 2, pp. 282–289, Feb. 2001.
[109]J. G. Proakis, Digital Communications, Fourth Edition. New York, McGraw-Hill, 2000.
[110]T. D. Chiueh, and P. Y. Tsai, OFDM Basedband Receiver Design for Wireless Communications. Singapore, John Wiley & Sons, 2007.
[111]D. W. Lim, C. W. Lim, J. S. No, and H. Chung, “A new PTS OFDM scheme with low complexity for PAPR reduction,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 77-82, Mar. 2006.
[112]C. C. Yeh, and J. R. Barry, “Adaptive minimum bit-error equalization for binary signaling,” IEEE Trans. Commun., vol. 48, no. 7, pp. 1226-1235, Jul. 2000.
[113]C. C. Yeh, and J. R. Barry, “Adaptive minimum symbol-error rate equalization for quadrature-amplitude modulation,” IEEE Trans. Signal Process., vol. 51, no. 12, pp. 3263-3269, Dec. 2003.
[114]D. A. Harville, Matrix Algebra from a Statistician’s Perspective, New York, Springer-Verlag Inc., 2000.
[115]N. Chen, J. Zhang, and P. Zhang, “Improved channel estimation based on parametric channel approximation modeling for OFDM systems,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 217-225, Jun. 2008.
[116]L. H. Grokop, and D. N. C. Tse, “Diversity–Multiplexing Tradeoff in ISI Channels,” IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 109-135, Jan. 2009.
[117]A. H. Sayed, Fundamentals of Adaptive Filtering, New Jersey, John Wiley & Sons Inc., 2003.
[118]M. J. Hao, “ML estimation of frequency offset for general ICI self-cancellation based OFDM systems,” IEICE Trans. Commun., vol. E90-B, no. 3, Mar. 2007.
[119]J. Zhu, and W. Lee, “Carrier frequency offset estimation for OFDM systems with null subcarriers,” IEEE Trans. Veh. Technol., vol. 55, no. 5, pp. 1677 – 1690, Sep. 2006.
[120]Z. Wang, and B. G. Georgios, “Wireless Multicarrier Communications: where Fourier Meets Shannon,” IEEE Trans. Signal Process., pp. 29-48, May 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top