跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝建偉
研究生(外文):Chien-Wei Hsieh
論文名稱:溫度無感位移光纖光柵感測器之設計與研製
論文名稱(外文):Design and Study of Temperature Insensitive Displacement Fiber Grating Sensor
指導教授:梁財春梁財春引用關係
指導教授(外文):Tsair-Chun Liang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:116
中文關鍵詞:布拉格光纖光柵(FBG)溫度無感位移感測器
外文關鍵詞:temperature insensitivefiber Bragg grating (FBG)displacement sensor
相關次數:
  • 被引用被引用:8
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之感測器主要是以布拉格光纖光柵(Fiber Bragg grating, FBG)為感測元件,當感測器受位移作用後,會使得FBG中心波長產生變化達到感測效果。本論文所設計之感測器以感測位移量為主要。因FBG易受到外在環境溫度的影響而產生感測值誤判,因此利用溫度無感之設計使得量測值更為正確,本論文達到溫度無感的方法為,將原本為單一週期的FBG經過特殊設計及封裝後,當受到位移作用,將使得原本為單一週期的FBG改變為漸變週期的FBG,而使光纖光柵反射訊號頻寬的改變,藉由量測頻寬來判讀感測數值,因頻寬的大小不受溫度影響,故可達到溫度無感效果。
本論文設計之位移感測器,經結構分析軟體及實驗驗證後,證實了此感測器設計是可行的,且感測性能優良,感測最大頻寬數值可達3.208nm,可感測位移量範圍為0 - 10.5mm,感測靈敏度為0.264nm/mm,感測性能與其他研究論文相比相當有競爭力,而在溫度無感測試實驗,以20℃ - 45℃範圍內之溫度,溫度無感效果較佳,溫度無感感測最大誤差值為0.045nm,最小誤差值為0.03nm,在感測應用上可應於橋樑及機器之狀況監測,且不需另外作溫度補償之設計,減少了感測器實際應用之成本。
In this paper, we use the sensor based on fiber Bragg grating as sensing element, it will make FBG center wavelength drift to reach sensing effect when the sensor affected by displacements. In this paper, the design of sensors is mainly to sense the displacement. FBG is easily to have misjudgements in sensor value due to the influence of the external environment temperature, so we designed temperature insensitive to make the measured value is more correct. The method of reaching temperature insensitive, the FBG with original single period has been designed and packaged specially and affected by displacement effect, the single period will become to gradient period. The change of the bandwidth with reflected by Fiber Grating, we can measure the bandwidth to determine the value of sensors, finally, it will take the purpose with temperature insensitive.
It is proved that the displacement sensor design in this research is feasible through analysis by structural analysis software and experiment, and sensing excellent with maximum bandwidth value of 3.208 nm and displacement of sensing range is 0-10.5 mm, the sensitivity of sensor is 0.264 nm/mm. The performance of sensor is better than other research. The better performance in temperature insensitive test is the range of temperature at 20℃-45℃, the maximum error value is 0.045 nm, minimum error value is 0.03 nm. It can be used in bridge and machine monitored, that don’t need to sense for temperature compensation also reduce the cost of sensor applications.
中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
符號說明 xii
第一章 緒論 1
1.1 研究目的 1
1.2 研究背景 2
1.3 文獻回顧 3
第二章 光纖感測器系統及原理介紹 6
2.1 光纖簡介 6
2.2 光纖特性及應用 7
2.2.1 光纖原理及特性 7
2.2.2 光纖種類 13
2.2.3 光纖應用 16
2.3 布拉格光纖光柵介紹 20
2.3.1 布拉格光纖光柵簡介 20
2.3.2 布拉格光纖光柵感測原理及製作 22
2.3.3 布拉格光纖光柵應用 26
2.4 布拉格光纖光柵感測器溫度無感設計 27
第三章 感測器架構 37
3.1 感測器架構 37
3.1.1 感測器模型 38
3.1.2 感測器各組件介紹 40
3.1.3 感測器布拉格光纖光柵封裝方法 41
3.1.4 感測光路設計 44
3.2 感測器架構有限元素分析 46
3.2.1 有限元素分析軟體介紹 46
3.2.2 有限元素分析條件設定 47
3.2.3 有限元素分析結果判讀 52
第四章 實驗規劃與結果討論 58
4.1 元件儀器量測及校正 58
4.1.1 光纖元件傳輸訊號量測 59
4.1.2 布拉格光纖光柵特性量測 63
4.1.3 溫度無感實驗設計 65
4.2 實驗規劃與量測數值 67
4.2.1 長方形彈片設計感測器實驗測試結果 67
4.2.2 三角形彈片設計感測器實驗測試結果 73
4.2.3 實驗測試結果比較 77
4.3 實驗結果討論 79
第五章 結論 83
5.1 結論 83
5.2 未來展望 84
參考文獻 85
附錄一、中英文對照表 91
附錄二、感測器及實驗儀器實體圖 93
附錄三、實驗訊號波形圖 97
[1]S.Binua, V P Mahadevan Pillaia, N.Chandrasekaranb, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration”, Optics & Laser Technology, 39, 8, 1537–1543, 2007.
[2]Cook RO, Hamm CW, “Fiber optic lever displacement transducer”, Appl Opt , 18, 19, 3230–3241, 1979.
[3]Cook RO, Hamm CW, “Shock measurement with non-contacting fiber optic levers”, J Sound and Vibration, 76, 3, 443–456, 1981.
[4]Cockshott CP, Pacaud SJ, “Compensation of an optical fibre reflective sensor”, Sensors and Actuators , 17, 1-2, 167–171, 1989.
[5]He G, Cuomo FW, “Displacement response detection limit and dynamic range of fibre-optic lever sensors”, IEEE J Light Wave Technol, 9, 11, 1618–1625, 1991.
[6]Utou FE, Gryzagoridis J, Sun B, “Parameters affecting the performance of fibre optic displacement sensors”, Smart Mater Struct, 15, 1, S154–S157, 2006.
[7]Y. J. Rao, D. A. Jackson, R. Jones and C. Shannon, “Development of prototype fiber-optic-based fizeau pressure sensors with temperature compensation and signal recovery by coherence reading”, Journal of Lightwave Technology, 12, 9, 1685–1695, 1994.
[8]Benjamin J Vakoc, Michel J. F. Digonnet, and Gordon S. Kino, “A novel fiber-optic sensor array based on the sagnac interferometer”, journal of lightwave technology, 17, 11, 276–284 1999.
[9]Gao Zhi Xiao, Ping Zhao, Fengguo Sun, Zhenguo Lu, and Zhiyi Zhang,
“Arrayed-waveguide-grating-based interrogator for wavelength-modulated multi-fiber-optic sensor applications”, IEEE Photonics Technology Letters, 17, 8, 1710-1712, 2005.
[10]Pawel Niewczas, Lukasz Dziuda, Grzegorz Fusiek, and James R. McDonald, “Design and evaluation of a preprototype hybrid fiber-optic voltage sensor for a remotely interrogated condition monitoring system”, IEEE Transactions on Instrumentation and Measurement, 54, 4, 1560–1564, 2005.
[11]W.J.B.Grouve, L. Warnet , A. de Boer, R. Akkerman, J. Vlekken, “Delamination detection with fibre Bragg gratings based on dynamic behaviour”, Composites Science and Technology, 68, 12,2418–2424,2008.
[12]Hajime Sakata , Hisashi Ito, “Optical fiber temperature sensor using a pair of nonidentical long-period fiber gratings for intensity-based sensing”, Optics Communications, 280, 1, 87–90, 2007.
[13]M. Pang, M. Zhang, L. W. Wang, Q. L. Zou, W. Kuang, D. N. Wang, and Y. B. Liao, “Phase mode matching demodulation scheme for interferometric fiber-optic sensors”, IEEE Photonics Technology Letters, 19, 1, 39–41, 2007.
[14]A.L.Chaudhari, A.D.Shaligram, “Multi-wavelength optical fiber liquid refractometry based on intensity modulation”, Sensors and Actuators A: Physical, 100, 2-3, 160–164, 2002.
[15]H.Golnabi, P.Azimi, “Design and performance of a plastic optical fiber leakage sensor”, Optics & Laser Technology, 39, 7, 1346–1350, 2007.
[16]Byoungho Lee, “Review of the present status of optical fiber sensors”, Optical Fiber Technology , 9, 2, 57–79, 2003.
[17] M.G. Xu, J.L. Archambault, L. Reekie, J.P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors”, Electron. Lett, 30, 13, 1085–1087, 1994.
[18]M. D. Todd, G. A. Johnson, B. A. Althouse, S. T. Vohra, “Flexural Beam-Based Fiber Bragg Grating Accelerometers”, IEEE Photonics Technology Letters, 10, 11, 1605-1607, 1998.
[19]T. A. Berkoff, A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer”, IEEE Photonics Technology Letters, 8, 12, 1677–1679, 1996.
[20]Akira Mita, Isamu Yokoi, “Fiber Bragg grating accelerometer for structural health monitoring”, Fifth International Conference on Motion and Vibration Control, 2000.
[21]Xingjie Ni, Yong Zhao, Jian Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor”, Sensors and Actuators, 138, 1, 76–80., 2007
[22]Lihui Liu, Hao Zhang, Qida Zhao, Yuliang, Liu, Fang Li, “Temperature-
independent FBG pressure sensor with high sensitivity”, Optical Fiber Technology, 13, 1,.78–80, 2007.
[23]潘昭倩, “側壓式布拉格光纖光柵壓力感測器之研發”, 國立高雄第一科技大學光電工程研究所碩士班, 碩士論文, 2007.
[24]W. W. Lin, S.C. Huang, M.H. Cheng, “A fiber optic microampere DC current sensor”, Opt. Eng., 42, 9, 2551–2557, 2003.
[25]Jaehoon Jung, Hui Nam, Byoungho Lee, Jae Oh Byun, Nam Seong Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity”, Appl.Opt., 38, 13, 2752–2754, 1999.
[26]Raman Kashyap, “Fiber Bragg gratings”, Fiber and Integrated Optics, 19, 4 , 495, 2000.
[27]陳瑞鑫, 陳鴻仁, 林依恩, “光通訊原理與技術”, 全華科技圖書股份有限公司, 2004.
[28]百禾燈業有限公司, “淺析光纖照明與LED照明的區別”, 2007
[29]蔡源展, “溫度無感之光纖光柵振動感測器之研究”, 國立清華大學光電工程研究所碩士班, 碩士論文, 2005
[30]W.W.Morey, G.Meltz, W.H.Glenn, “Fiber Bragg grating sensor”, in Proc.SPICE Fiber Optic & Laser Sensor VII, 1169, 98–104, 1989.
[31] Alan D.Kersey, Michael A.Davis, Heather J.Patrick, Michel LeBlanc,
K.P.Koo , C.G.Askin, M.A.Putnam, E.Joseph Friebele, “Fiber Grating
sensors”, Journal of Lightwave Technoligy, 15, 8, 77–85, 1997.
[32]林詠彬, “光纖光柵感測器於土木結構應用之研究”, 國立台灣大學土木
工程學系, 碩士論文, 2000.
[33]邱宗炫, 黃裕文, 夏中和, “光纖光柵應變感測器之溫度與膠合效應之研究
”, 科儀新知第19卷1期, 21–23, 1997.
[34]葉天傑, “外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測”,
國立台灣大學機械工程所, 碩士論文, 2002.
[35]Horatio Lamela Rivera, Jose A. Garcia-Souto, J.Sanz, “Measurement of mechanical vibrations at Magnetic core of power transformers with fiber-optic interferometric intrinsic sensor”, IEEE Journal on Selected Topics in
Quantum Ectronic,.6, 5, 33–39, 2000.
[36]Keke Tian, Yuliang Liu, Qiming Wang, “Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever”, Optical Fiber Technology, 11, 4, 370–377, 2005.
[37]Yong Zhaoa, Chengbo Yub, Yanbiao Liaoc, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement”, Optics & Laser Technology, 36, 1, 39–42, 2004.
[38]Samir K. Mondal, Vandana Mishra, Umesh Tiwari, G.C.Poddar, ahar Singh,Subhash C.Jain, S.N.Sarkar, Pawan Kapur, “Embedded dual fiber Bragg grating sensor for simultaneous measurement of temperature and load (strain) with enhanced sensitivity”, Microwave and Optical Technology Letters, 51, 7, 1621–1624, 2009.
[39]Xingfa Dong, Yonglin Huang, Kewei Lang, Weigang Zhang, Guiyun Kai, Xiaoyi Dong, “Temperature compensation for micro-vibration sensor with fiber gratings”, Microwave And Optical Technology Letters, 42, 6, 474–476, 2004.
[40]Chulhun Seo, Taesun Kim, “Temperature sensing with different coated metals on fiber Bragg grating sensors”, Microwave And Optical Technology Letters, 21, 3, 162–165, 1999.
[41]O.Frazao, L.Marques, J.M.Marques, J.M. Baptista, J.L.Santos, “Simple sensing head geometry using fibre Bragg gratings for strain–temperature discrimination”, Optics Communications, 279, 1, 68–71, 2007.
[42]O.Frazao, R.Oliveira, I.Dias1, “A simple smart composite using fiber Bragg grating sensors for strain and temperature discrimination”, Microwave and Optical Technology Letters, 51, 1, 235–239, 2009.
[43]Li Xiaohong, Wang Dexiang, Zhao Fujun, Dai Enguang, “Simultaneous independent temperature and strain measurement using one fiber Bragg grating based on the etching technique”, Microwave and Optical Technology Letters, 43, 6, 478–481, 2004.
[44]Yong Zhao, Hua-wei Zhao, Xin-yuan Zhang, Qing-yao Meng, Bo Yuan, “A novel double-arched-beam-based fiber Bragg Grating sensor for displacement measurement”, IEEE Photonics Technology Letters, 20, 15, 1296–1298, 2008.
[45]Fang Xie, Xianfeng Chen, Lin Zhang, Ming Song, “Realisation of an effective dual-parameter sensor employing a single fibre Bragg grating structure”, Optics and Lasers in Engineering, 44, 10, 1088–1095, 2006.
[46]Jun Hong Ng, Xiaoqun Zhou, Xiufeng Yang, Jianzhong Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor”, Optics Communications, 273, 2, 398–401,2007.
[47]Bai-Ou Guan, Hwa-Yaw Tam, Helen L. W. Chan, Chung-Loong Choy, Muhtesem Su leyman Demokan, “Discrimination between strain and temperature with a single fiber Bragg grating”, Microwave and Optical Technology Letters, 33, 3, 200–202, 2002.
[48]Hang-Yin Ling, Kin-Tak Lau, Zhongqing Su, Eric Tsun-Tat Wong, “Monitoring mode II fracture behaviour of composite laminates using embedded fiber-optic sensors”, Composites:Part B, 38, 4, 488–497, 2007.
[49] Z.C.Zhuo, B.S.Hama, “A temperature-insensitive strain sensor using a fiber Bragg grating”, Optical Fiber Technology, 15, 5-6, 442–444, 2009.
[50]Xinyong Dong, Bai-Ou Guan, Shuzhong Yuan, Xiaoyi Dong, Hwa-Yaw Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength”, Optics Communications, 202, 1-3, 91–95, 2002.
[51]Lihui Liu, Hao Zhang, Qida Zhao, Yuliang Liu, Fang Li, “Temperature-
independent FBG pressure sensor with high sensitivity”, Optical Fiber Technology, 13, 1, 78–80, 2007.
[52]李銘淵, “光纖通信概論”, 全華科技圖書股份有限公司, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top