1. 周雨田、巫春洲和劉炳麟,2004。「動態波動模型預測能力之比較與實證」,財務金融學刊。12卷,1期,1-25。2. Agnolucci, P., 2009. Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models, Energy Economics 31, 316-321.
3. Alizadeh, S., M. W. Brandt and F. X. Diebold, 2002. Range-based estimation of stochastic volatility models, Journal of Finance 57, 1047-1091.
4. Beckers, S., 1983. Variances of security price returns based on high, low, and closing prices, Journal of Business 56, 97-112.
5. Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31, 307-327.
6. Brandt, M. W. and C. S. Jones, 2006. Volatility forecasting with range-based EGARCH models, Journal of Business & Economic Statistics 24, 470-486.
7. Chou, R. Y., 2005. Forecasting financial volatilities with extreme values: The conditional autoregressive range (CARR) model, Journal of Money, Credit and Banking 37, 561-682.
8. Christensen, B. J. and N. R. Prabhala, 1998. The relation between implied and realized volatility, Journal of Financial Economics 50, 125-150.
9. Christensen, B. J. and C. S. Hansen, 2002. New evidence on the implied-realized volatility relation, The European Journal of Finance 8, 187-205.
10. Corrado, C. and C. Truong, 2007. Forecasting stock index volatility: Comparing implied volatility and the intraday high-low price range, Journal of Financial Research 30, 201-215.
11. Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica 50, 987-1008.
12. Engle, R.F., 2002. New frontiers for ARCH models, Journal of Applied econometrics 17, 425-446.
13. Engle, R.F. and G.M. Gallo, 2006. A multiple indicators model for volatility using intra-day data, Journal of Econometrics 131, 3-27.
14. Lam, K.P. and H. S. Ng, 2009. Intra-daily information of range-based volatility for MEM-GARCH, Mathematics and Computers in Simulation 79, 2625-2632
15. Li, S. and Q. Yang, 2009. The relationship between implied and realized volatility: evidence from the Australian stock index option market, Review of Quantitative Finance and Accounting 32, 405-419
16. Martens, M. and D. van Dijk, 2007. Measuring volatility with the realized range, Journal of Econometrics 138, 181-207.
17. Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of return, Journal of Business 53, 61-66.
18. Regnier, Eva., 2007. Oil and energy price volatility, Energy Economics 29, 405-427.
19. Rogers, L. C. G. and S. E. Satchell, 1991, Estimating variance from high, low, and closing prices, The Annals of Applied probability 1, 504–512.
20. Tu, T. T., C. C. Wu and N. Liu, 2009, Latent information VIX for dynamic volatility structure, Working paper, Department of Finance, Ming Chuan University.
21. Yang, D. and Q. Zang, 2000. Drift-independent volatility estimation based on high, low, open, and close prices, Journal of Business 73, 477-491.