跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李兆師
研究生(外文):Chao-Shih Lee
論文名稱:使用基因演算法與模糊理論改善軟體成本評估之準確度
論文名稱(外文):Using genetic algorithm and fuzzy theory to improve the accuracy of software cost estimation
指導教授:黃文楨黃文楨引用關係
指導教授(外文):Wen- Chen Huang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:資訊管理所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:COCOMO模糊理論基因演算法軟體成本預估強度關聯誤差
外文關鍵詞:Fuzzy TheoryGenetic AlgorithmSoftware cost estimationCOCOMOMRE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前大部分軟體成本的預估,是以軟體的特徵、大小或功能點為主。但是其中個別項目的權重會直接影響到預估的準確度。本篇論文提出GAF來預估軟體成本。GAF結合了基因演算法(Genetic Algorithm,GA)與模糊理論(Fuzzy Theory)兩種演算法。透過GA找尋最佳化的特性,找出適當的成本動因。再將其與人月(Person Months,PM)求得平均值。這個平均值可作為Fuzzy membership function的輸入參數。透過Fuzzy的規則,進一步找出最佳的PM值。強度關聯誤差(Magnitude Relative Error,MRE)與平均強度關聯誤差(Mean Magnitude Relative Error,MMRE)用來表示評估軟體方法的準確度。實驗結果顯示: Fuzzy方法去評估軟體的MMRE為20.99%,而GAF的MMRE為9.38%。這證明在軟體成本預估方面GAF比Fuzzy方法更準確。
At present, most software cost estimates, based on the software''s features, size or functional point. However, the weights of individual items directly affect the forecast accuracy. This paper presents the GAF method to estimate software costs. The GAF method combines genetic algorithm (GA) and fuzzy theory algorithms. The appropriate are optimized by GA. Then the average values of those weighting coefficients and the values of Person Months (PM) are computed. These average values can be used as input parameters of Fuzzy membership function. By Fuzzy rules, the predicted PM will be found. The Magnitude Relative Error (MRE) and the Mean Magnitude Relative Error (MMRE) are used to represent the accuracy of the software assessment. The experimental results show that: the MMRE of Fuzzy approach is 20.99%, while the GAF''s MMRE is 9.38%. This proves that GAF is more accurate than Fuzzy for software cost estimation.
摘要 I
ABSTRACT II
目錄 III
表目錄 IV
圖目錄 V
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 重要性與貢獻 3
第四節 論文架構 4
第貳章 文獻探討 5
第一節 認知科學 5
第二節 統計分析 7
第三節 軟體可靠度模型 8
2.3.1 曲線擬合模型 8
2.3.2 植入錯誤模型 9
2.3.3 失效率模型 10
2.3.4 異質性卜瓦松過程模型 10
2.3.5 馬可夫結構模型 10
2.3.6 可靠度成熟模型 11
第參章 研究方法 13
第一節 COCOMO方法 13
第二節 基因演算法 15
第三節 模糊理論 17
第四節 實驗設計 18
第五節 實驗流程 20
第肆章 實驗結果與分析 22
第一節 資料說明 22
第二節 實驗結果 22
第伍章 結論與未來研究 29
參考文獻 30
附錄A 34
附錄B 50
[1]Boehm, B. W., 1981, “Software Engineering Economics”, Prentice Hall PTR, Upper Saddle River, NJ.
[2]Kosko, B., 1992, “Neural Networks and Fuzzy Systems”, Journal of the Acoustical Society of America, vol.103(6), pp.3131-3131.
[3]Zadeh, L. A., 1991, “Fuzzy Sets”, Information and Control, vol.8(3), pp.338-353.
[4]Holland, J. H., 1975, “Adaptation in natural and artificial systems”, University of Michigan Press, Ann Arbor, MI.
[5]Jorgensen, M., 2010, “Identification of more risks can lead to increased over-optimism of and over-confidence in software development effort estimates”, Information and Software Technology, vol.52(5), pp. 506-516.
[6]Grimstad, S., 2006, “Software effort estimation terminology: The tower of Babel”, Information and Software Technology, vol.48(4), pp.302-310.
[7]Gruschke, T. M., 2008, “The role of outcome feedback in improving the uncertainty assessment of software development effort estimates”, ACM Transactions on Software Engineering and Methodology, vol.17(4), pp.1-35.
[8]Jorgensen, M., 2003, “An effort prediction interval approach based on the empirical distribution of previous estimation accuracy”, Information and Software Technology, vol.45(3), pp. 123-136.
[9]Jorgensen, M., 2001, “Impact of effort estimates on software project work”, Information and Software Technology, vol.43(15), pp. 939-948.
[10]Grimstad, S., 2009, “Preliminary study of sequence effects in judgment-based software development work-effort estimation”, IET Software, vol.3(5), pp.435-441.
[11]Grinistad, S., 2007, “Inconsistency of expert judgment-based estimates of software development effort, Journal of Systems and Software”, vol.80(11), pp.1770-1777.
[12]Van Koten, C., 2006, “Bayesian statistical effort prediction models for data-centred 4GL software development”, Information and Software Technology, vol.48(11), pp.1056-1067.
[13]Chulani, S., 1999, “Bayesian analysis of empirical software engineering cost models”, IEEE Transactions on Software Engineering, vol.25(4), pp. 573-583.
[14]Dolado, J. J., 2000, ”A validation of the component-based method for software size estimation”, IEEE Transactions on Software Engineering, vol.26(10), pp. 1006-1021.
[15]Mair, C., 2000, “An investigation of machine learning based prediction systems”, Journal of Systems and Software, vol.53(1), pp. 23-29.
[16]Subramanian, G. H., 2006, “An empirical study of the effect of complexity, platform, and program type on software development effort of business applications”, Empirical Software Engineering, vol.11(4), pp. 541-553.
[17]Pham, H., 2000,” Software Reliability”, Springer, New York.
[18]Yu, L. G., 2006, “Indirectly predicting the maintenance effort of open-source software”, Journal of Software Maintenance and Evolution-Research and Practice, vol.18(5), pp.311-332.
[19]Huang, S. J., 2006, “Optimization of analogy weights by genetic algorithm for software effort estimation”, Information and Software Technology, vol.48(11), pp. 1034-1045.
[20]Burgess, C. J., 2001, “Can genetic programming improve software effort estimation? A comparative evaluation”, Information and Software Technology, vol.43(14), pp. 863-873.
[21]Huang, S. J., 2008, “A comparative evaluation on the accuracies of software effort estimates from clustered data”, Information and Software Technology, vol.50(9-10), pp.879-888.
[22]Song, Q. B., 2006, “Software defect association mining and defect correction effort prediction”, IEEE Transactions on Software Engineering, vol32(2), pp.69-82.
[23]Gokhale, S. S., 2006, “Analytical models for architecture-based software: Reliability prediction: A unification framework”, IEEE Transactions on Reliability, vol.55(4), pp. 578-590.
[24]Lin, C. T., 2008, “Enhancing and measuring the predictive capabilities of testing-effort dependent software reliability models”, Journal of Systems and Software, vol.81(6), pp.1025-1038.
[25]Huang, C. Y., 2007, “An assessment of testing-effort dependent software reliability growth models”, IEEE Transactions on Reliability, vol.56(2), pp.198-211.
[26]Agrawal, M., 2007, “Software effort, quality, and cycle time: A study of CMM level 5 projects”, IEEE Transactions on Software Engineering, vol.33(3), pp.145-156.
[27]Huang, C. Y., 2006, “Optimal resource allocation for cost and reliability of modular software systems in the testing phase”, Journal of Systems and Software, vol.79(5), pp. 653-664.
[28]Huang, C. Y., 2005, “Optimal release time for software systems considering cost, testing-effort, and test efficiency”, IEEE Transactions on Reliability, vol.54(4), pp. 583-591.
[29]Kumar, K. V., 2008, “Software development cost estimation using wavelet neural networks”, Journal of Systems and Software, vol.81(11), pp.1853-1867.
[30]Azzeh, M., 2010, “Fuzzy grey relational analysis for software effort estimation”, Empirical Software Engineering, vol.15(1), pp. 60-90.
[31]Muzaffar, Z., 2010, “Software development effort prediction: A study on the factors impacting the accuracy of fuzzy logic systems”, Information and Software Technology, vol.52(1), pp. 92-109.
[32]Ahmed, M. A., 2009, “Handling imprecision and uncertainty in software development effort prediction: A type-2 fuzzy logic based framework”, Information and Software Technology, vol.51(3), pp.640-654.
[33]Reddy, C. S., and Raju K. V. S. V. N., 2009, “An Improved Fuzzy Approach for COCOMO’s Effort Estimation Using Gaussian Membership Function”, Journal of Software, vol.4(5), pp.452-459.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top