跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李鳳齊
研究生(外文):Feng-Chi Li
論文名稱:二氧化鈦奈米光觸媒薄膜之光催化活性與光電效應相關性研究
論文名稱(外文):Investigation on the relationships between photocatalytic activities and photoelectric effects of TiO2 thin films
指導教授:洪崇軒洪崇軒引用關係
指導教授(外文):Chung-Hsuang Hung
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:156
中文關鍵詞:光催化揮發性有機物光電效應氣體感測器濺鍍二氧化鈦
外文關鍵詞:sputteringgas sensorphotocatalysisphotoelectric effectsTiO2VOCs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在利用非平衡磁控濺鍍法技術,製備二氧化鈦(TiO2)光觸膜薄膜,並根據TiO2半導體之光電效應與光催化活性,進行相關效能之探討,以瞭解光催化活性與光電效應之關係,並期望藉此建立一套快速篩選觸媒活性之機制。本研究所使用的觸媒,係先於氧化鋁基板上鍍上梳型銀電極,再利用濺鍍技術鍍上TiO2薄膜,相關製備之觸媒可同時進行光催化分解污染物與實氣體感測驗。本研究之主要實驗參數包括:觸媒類型、污染物(MtBE,Methanol、Acetone)、反應溫度(60~120oC)和反應溼度(0~3712 μM)等進行相關實驗測試,相關之實驗係於批分式光催化反應中進行。
研究結果顯示:MtBE,Methanol、Acetone有機物呈現典型之氣相光催化氧化反應特性,三種揮發性有機物之光催化分解反應,皆呈擬一階分解速率關係,光觸媒表面之平衡吸附量,為反應溫度60~120oC範圍的速率限制步驟;三種揮發性有機物中,以methanol的反應速率為最快,其擬一階反應速率常數為4.3 min-1•m-2;此外,當反應溫度介於60~120oC時,有機物之光催化分解速率,隨溫度增加而下降;另外,適當的水氣含量,具有促進光催化分解的作用,但當水氣濃度過高時,因水氣與反應物競爭活性位址,反而導致分解速率降低;本研究應用L-H反應動力模式,模擬相關之分解動力關係,模擬成效不錯。模擬結果可發現,不同觸媒之反應速率常數值(kLH)差異不大,但催化活性較高的觸媒,其對於揮發性有機物與水氣之吸附平衡常數(Kc與Kw)也較大,驗證污染物之吸附難易程度為整體反應之反應速率限制步驟。
在氣體感測結果方面,本研究藉由以UV(365nm)作為活化光觸媒薄膜的光源下,成功地將光觸媒可感測溫度降至60 oC,而且偵測極限濃度可達ppb濃度範圍。本研究經由針對不同污染物、檢測溫度、光觸媒等實驗條件的測試,已建立相關性相當不錯之有機物濃度與感應值檢量關係,可針對不同溫度下對MtBE、methanol、aceton進行感測。此外,本研究也發現,當環境溫度溫度介於90~105 oC時,相關製備之光觸媒具有較佳的靈敏度,其可視為最佳的檢測溫度;另外,水氣含量對於不同揮發性有機物之感測影響方面,其影響趨勢大致相同,皆呈現先促進後抑制之現象,此與水氣分子干擾污染物光催化分解反應速率的效應一致。最後,本研究也發現,在相同參數條件下,當光催媒具有較高的促進氧化分解能力時,其氣體感測效能反而較不理想。顯示光觸媒薄膜之光電效應,可作為觸媒活性初步篩選之選項。
This study aims to investigate both photocatalytic activities and photoelectric sensing effects of thin-film TiO2 prepared by an unbalanced magnetically sputtering technology. The relationships between the photocatalytic activities and photoelectric sensing effects were especially interested in the study for the particular purposes of developing a fast evaluation method of photocatalyst activities. The photocatalysts were produced by depositing thin-film TiO2 on Al2O3 substrates on which comb-shaped Ag electrodes had been coated before the deposition of TiO2. Under the illumination of near-UV light, series of experiments including both photocatalysis of volatile organic compounds and change in electric resistances of the thin-film photocatalysts was monitored. Some typical experimental variables including four types of photocatalysts, there kinds of organic compounds (MTBE, methanol, and acetone), four reaction temperatures (60~120oC), and different water vapor contents were examined.
Some important results were observed in this study. For the photocatalytic oxidation of volatile organic compounds, typical heterogeneously photocatalytic oxidation reactions were observed,which followed pseudo-first-order reaction kinetics. It is also found that their degradation rates were decreased with the increase in reaction temperature and the rates were also enhanced while some water vapor can be involved in the reaction. But the reactions were inhibited when too much water vapor were present in the reaction system. The adsorption of organic compounds onto photocatalyst was considered as the rate determining step. A typical photocatalytic reaction kinetic model, Langmuir-Hinshelwood kinetics, was applied to simulate the photocatalysis of them and showed well prediction of the experimental results.
For the gas sensing experimental results, this study successfully demonstrated the prepared samples keeping well sensing effects at 60 oC while under the illumination of 365-nm near UV light, instate of proving high-temperature conditions. The prepared thin-film photocatalysts can be sensitive sensing materials for measuring organic vapors with ppb-level concentrations. The experimental results also indicated that the photocatalysts could be more sensitive at about 90~105 oC for monitoring the concentrations of tested volatile organic compounds, but too much water vapor presenting in the reaction systems could reduce the sensing sensitivities. An interesting result was also observed in the study, showing the photocatalyst achieving high oxidative capabilities with relatively poorly photo sensing effects for the organic vapors.
摘要 I
目錄 VI
表目錄 IV
圖目錄 VI
第一章 緒論 1
1-1研究緣起 1
1-2研究目的 4
第二章 文獻回顧 5
2-1 揮發性有機物特性 5
2-2半導體氧化物與異相光催化反應 11
2-2-1半導體氧化物性質 11
2-2-2半導體之光反應特性 14
2-2-3二氧化鈦光催化反應 18
2-2-4光催化之反應動力模式 23
2-3半導體氣體感測器基本原理 25
2-3-1蕭特基接觸 25
2-3-2氧氣的吸附與還原性氣體的作用 28
2-3-3 電子空乏層 33
2-3-4 氧空位 35
2-3-5影響氣體感測器影響感測靈敏度之因素 36
2-3-6氣體感測器靈敏度定義 37
2-3-7氣體感測器之相關研究發展 38
2-4光觸媒製備技術 40
2-4-1二氧化鈦之製備方法 40
2-4-2改質型二氧化鈦光觸媒 43
第三章 研究方法 45
3-1實驗內容與規劃 45
3-2實驗材料與設備 48
3-2-1實驗材料 48
3-3實驗方法 49
3-3-1光觸媒氣體感測薄膜製備 49
3-3-2系統特性測試 51
3-3-3異相光催化反應操作實驗 52
3-3-4氣體感測實驗 53
3-3-5光觸媒之表面特性分析方法 55
3-4有機污染物分析方法 57
3-4-1反應物之定性定量分析 57
3-5分析方法之品保品管 59
3-5-1污染物與標準品之比對 59
3-5-2檢量線之配製 59
3-6靈敏度與回應值之計算方式 62
第四章 結果與討論 63
4-1光觸媒薄膜特性 63
4-1-1 SEM結構分析 65
4-1-2XRD結構分析 67
4-2批次反應系統特性測試 68
4-3 揮發性有機物之光催化分解結果 72
4-3-1光觸媒類型與光催化分解VOCs之關係 76
4-3-2反應溫度對光催化分解VOCs之影響 79
4-3-3水氣含量對光催化分解VOCs之影響 84
4-3-4光催化分解動力之模擬 88
4-4操作參數與氣體感測之關係 95
4-4-1 有機物濃度對氣體感測器之關係 95
4-4-2 操作溫度與靈敏度之關係 107
4-4-3 水氣濃度與靈敏度之關係 115
4-4-4 感測器之選擇性 118
4-4-5 氣體感測行為之探討 120
4-5 光催化分解污染物與光電效應之關係 123
4-5-1有機物對光催化分解污染物與光電效應之關係 123
4-5-2 觸媒類型對光催化效能與光電效應之關係 128
第五章 結論與建議 131
5-1結論 131
5-2 建議事項 132
參考文獻 134
1. Berry R W.; Hall P M.; Harris M F.,“Thin film technology”, Van Nostrand Reinhold
(1968).
2. Buckley T J.; Pleil J D.; Bowyer J R.; Davis J M.,“ Evaluation of methyl tert-butyl
ether (MtBE) as an interference on commercial breath-alcohol analyzers”, Forensic
Sci Int , 123: 111-118(1997).
3.Carp O.; Huisman C L.; Reller A.,“ Photoinduced reactivity of titanium dioxide”,
Progress in Solid State Chemistry , 32: 33-177(2004).
4.Chang S C., “Thin-film semiconductor NOx sensor” , IEEE Transactions on Electron
Devices ,26.12: 1875–1880 (1979)
5.Chen D.; Jiang Z.; Geng J.; Wang Q.; Yang D.,“ Carbon and Nitrogen Co-doped TiO2
with Enhanced Visible-Light Photocatalytic Activity”, Ind. Eng Chem. Res , 46:
2741-2746 (2007).
6.Dionysios D.; Makram T.; Isabelle B.; Lee J M.,“ Oxidation of organic contaminants
in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damköhler number”, Applied
Catalysis B: Environmental , 38: 1-16(2002).
7.Emeline A V.; Smirnova L G.; Kuzmin G N.; Basov L L.; Serpone N.,“ Spectral
dependence of quantum yields in gas-solid heterogeneous photosysems influence
of anatase/rutile content on the photostimulated adsorption of dioxygen and
dihydrogen on titania”,Journal of Photochemistry and Photobiology A: Chemistry ,
148:97-102(2002).

8.Esfandyarpour B.; Mohajerzadeh S.; Famini S.; Khodadadi A.; Asl
E.,“ SoleimaniHigh sensitivity Pt-doped SnO2 gas sensors fabricated using sol–gelsolution on micromachined (100) Si substrates”, Sensors and Actuators B: Chemcal , 100: 190–194(2004).
9.Fujishima A.; Honda K.,“ Electrochemical photolysis of water at a semiconductor
Electrode”, Nature , 238: 37-38(1972).
10.Ferroni M.; Guidi V.; Martinelli G.,“ Characterization of a nanosized TiO2 gas sensor,”
Nanostructured Materials , 7: 709–718(1996).
11.Hana C H.; Hong D W,; Han S D,; Gwak J.; Krishan C.,“ Catalytic combustion type
hydrogen gas sensor using TiO2 and UV-LED.” Singh Sensors and Actuators B , 125: 224–228(2007).
12.Heiland G.,“ Homogeneous semiconducting gas sensors” , Sensors and Actuators
B:chemical ,2: 343–361 (1982).
13.Hertz H.,“ Ueber einen Einfluss des ultravioletten Lichtes auf die electrische
Entladung”,Annalen der Physik , 8:983-1000(1887).
14.Hidalgo M C.; Colon G.; Navi J A.,“ Modification of the physicochenical properties of
commercial TiO2 samples by soft mechanical activation”, Journal of Photochemistry and Photobiology A: Chemistry, 148:341-348(2002).
15.Hieu V N.,“ Highly reproducible synthesis of very large-scale tin oxide nanowires used
for screen-printed gas sensor”, Nguyen Van Hieu , 32: 56-73(2009).
16.Hoffmann M R.; Martin S T.; Choi W.; Bahnemann D W.,“ Environmental
applications of semiconductor photocatalysis”, Chem Rev , 95: 69-96(1995).


17.Hung C. H.; Yuan C S.,“ Gas-phase photocatalytic degradation of trichloroethylene on
Pyrex pellets immobilized with anatase TiO2“, Chinese Institute of Environ. Eng , 8: 1–11(1998).
18.Jayaraman V.; Gnanasekar k i.; Prabhu E.; Gnanasekaran T.; Periaswami G., “A low
temperature H2 sensor based on intermediate hydroxyl tin oxide”,Sensors and Actuators B: chemical, 55:147-153(1999).
19.Kawahara T.; Konishi Y.; Tada H.; Tohge N.; Ito S.,“ Patterned TiO2/SnO2 bilayer
type photocatalyst efficient dehydrogenation of methanol”, Langmuir, 17:7442–7445(2001).
20.Koelsch M.; Cassaignon S.; Guillemoles J F.; Jolivet J P.,“ Comparison of optical and
electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method”, Thin Solid Films, 312:403–404(2002).
21.Kohl D.,“Surface processes in the detection of reducing gases with SnO2-based
devices” , Sensors and Actuators B:chemical , 18: 71–113(1989).
22.Kuromoto N. K.; Simão R. A.; Soares G. A.,“ Titanium oxide films produced on
commercially pure titanium by anodic oxidation with different voltages”, Materials
Characterization, 58: 114-121(2007).
23.Linsebigler A L.; Lu G.; Yates J T.,“ Photocatalysis on TiO2 surface Principles,
mechanism, and selected results”, Chem Rev , 95: 735-758(1995).
24.Liou W J.; Lin H M,;" Nano Hybrid of TiO2/Carbon Black for NO2 Gas Sensing,"
China Particuology , 5:. 225-229(2007).
25.Maeda M.; Watanabe T.,“ Evaluation of photocatalytic properties of titanium oxide
films prepared by plasma-enhanced chemical vapor deposition”, Thin Solid Films , 489: 320-324(2005).
26.Marci G.; Sclafani A.; Augualiaro V.; Palmisano L.; Schiavello M.,“ Influence of some
aromatic and aliphatic compounds on the rate of photodrgration of phenol in
aqueous susoensions of TiO2”, J Photochemistry & Photobiology A: Chemistry , 89:
69-74 (1995).
27.Meixner H.; Gerblinger J.; Lampe U.; Fleischer M., “Thin-film gas sensors based on
semiconducting metal oxide”, Sensors and Actuators B:chemical , 23:
119-125(1995).
28.Ming L.; Shifeng Z.; Yuewei Z.; Guangqin C.; Zhanglian H.,“ One-step solvothermal
preparation of TiO2/C composites and their visible-light photocatalytic activities,
Science,” 254: 3762-3766(2008).
29.Ming L.; Shifeng Z.; Yuewei Z.; Guangqin C.; Zhanglian H.,“ One-step solvothermal
preparation of TiO2/C composites and their visible-light photocatalytic activities”,
Science(2008).
30.Morrision S R.,“ Chemical sensors”, in Semiconductor Sensors ed S M Sze New York
John Wiley and Sons Inc , 383(1994).
31.Morrison S R.,“ The Chemical Physics of Surfaces 2nd ”, New York Plenum Press,
251(1990).
32.Ozaki S.; Zhao L H.; Amemiya T.; Itoh K.; Murabayashi M.,“ Gas-phase
photocatalytic degradation of cis-1,2-dichloroethylene using titanium dioxide under near-UV-illumination”, Applied Catalysis B: Environmental , 52: 81-89(2004).
33.Parvulescu V I.; Levy F.; Neatu S.,“ Photocatalytic decomposition of acetone over
dc-magnetron sputtering supported vanadia/TiO2 catalysts”, Catalysis Today , 142:
165-169(2009).

34.Qamar M.; Muneer M.,“ Comparative photocatalytic study of two selected pesticide
derivatives,indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide”, Journal of Hazardous Materials B , 120: 219-227(2005).
35.R.W. Legan, Chemical Engineering 1982; pp.81-95.
36.Sakthivel S.; Kisch H.,“ Daylight photocatalysis by carbon-modified titanium dioxide”,
Angew. Chem. Int. Edit , 42: 4908–4911(2003).
37.Sato T.; Tayta M.,“ Enhancement of phage inactivation using photocatalytic titanium
dioxide particles with different crystalline structures”, Biochemical Engineering Journal, 28:303-308(2006).
38.Schiavello R.; Cavaliere F.; Sollazzi L.; Loffreda C.; Marana E.,“ Changes of serum
pyruvate and lactate in open-heart surgery”, Resuscitation , 11: 35-45(1984).
39.Shimizu Y.; Egashira M., “Basic aspects and challenges of semiconductor gas
sensors”, MRS Bulletin June , 18-24(1999).
40.Skata T.,“ Heterogeneous photocatalsis at Liquid-Solid Interfaces, In Photocatalysis:
Fundamentals and Applications”, John Wiley & Sons New York , 311-338(1989).
41.Slavcheva E.; Ganske G.; Topalov G.; Mokwa W.; Schnakenberg U.,“ Effect of
sputtering N parameters on surface morphology and catalytic efficiency of thin
platinum films”, Applied Surface Science , 255: 6479-6486(2009).
42.Song S K.; Lee J Y,; Baik H K,; Koh S K., “Structure and gas-sensors characteristics
of undoped tin oxide thin films fabricated by ion-assisted deposition”, Sensors and
Actuators B: chemical, 46:42-49(1998).
43.Szymanowski H.; Sobczyk A.; Lipman G M.; Jakubowski W.; Klimek L.,“ Plasma
enhanced CVD deposition of titanium oxide for biomedical applications”, Surface
& Coatings Technology”, 200:1036-1040(2005).
44.Tamaki J.; Maekawa T.; Miura N.; Yamazoe N., “CuO-SnO2 element for highly
sensitive and selective detections of H2S”, Sensors and Actuators B:chemical, 9:
197–203(1992).
45.Teeramongkonrasmee A.; Sriyudthsak M.,“ Methanol and ammonia sensing
characteristics of sol–gel derived thin film gas sensor” , Sensors and Actuators
B:chemical , 66: 256–259(2000).
46.Vasiliev R B.; Rumyantseva M N.; Podguzova S E.; Ryzhikov A S.; Ryabova L I.;
Gaskov A M.,“ Effect of interdiffusion on electrical and gas sensor properties of
CuO/SnO2 heterostructure”, Materials Science and Engineering B: chemical ,
57 :241- 246 (1999).
47.Wehner G K.,“ Advances in electronics & electron physics”, New York: Academic
Press , 7: 239(1955).
48.Weisz P B.,“ Effects of electronic charge transfer between adsorbate and solid on
chemisorption and catalysis”, The Journal of Chemical Physics , 21: 1531–1538
(1953).
49.Windischmann H.; Mark P.,“ A model for the operation of a thin film SnOx
conductance-modulation carbon monoxide sensor” , Journal of the electrochemical
society , 64: 627–633(1979).
50.Wu K R.; Hung C H.,“ Characterization of N,C-codoped TiO2 films prepared by
reactive DC magnetron sputtering”, Applied Surface Science , 256(5):
1595–1603(2009).
51.Wu X H.; Wang Y D., Tian Z H.; Liu H L.; Zhou Z L.; Li Y F.,“ Study on ZnSnO3
sensitivity material based on combustible gases”, Solid-State Electronics, 46 :
715-719 (2002).
52.Xu C.; Jun T.; Miura N.; Yamazoe N., “Correlation between gas sensitivity and
crystallite size in porous SnO2-base sensors”, Chem Lett , 3: 441-444 (1990).
53.Yamazoe N.; Fuchigami J.; Kishikawa M.; Seiyama T.,“ Interactions of tin oxide
surface with O2, H2O and H2”, Surface Science , 86: 335-344 (1979).
54.Yamazoe N.; Miura N., “Environmental gas sensing”, Sensors and Actuators
B :chemical , 20: 95-102(1994).
55.Yanzhu L.; Guohua Z.; Xili T.; Meichuan L.; Dongming L.; Rong G.,“ High
Electrocatalytic Activity of Pt–Pd Binary Spherocrystals Chemically Assembled in Vertically AlignedTiO2 Nanotubes”, ChemPhysChem , 11: 276 – 284(2010).
56.Zepp G.,“ Role of particles in natural water photochemistry”, Applied Geochemistry ,
3:68- 72(1988).
57.Zhang Q.; Gao L.; Guo J.,“ Effects of calcination on the photocatalytic properties of
nanosized TiO2 powders prepared by TiCl4 hydrolysis”, Applied Catalysis B:
Environmental , 26: 207–215(2000).
58.Zhang S.; Fujii N.; Nosaka Y.,“ The dispersion effect of TiO2 loaded over ZSM-5
zeolite”, Journal of Molecular Catalysis A: Chemical , 129: 219-224(1998).
59.尤啟中,以化學氣相沈積法成長SiOx與TiO2一維奈米結構之研究,國立成功大
學化學工程學系,碩士論文,(2003)。
60.卡田博史,光觸媒圖解,商周出版,(2003)。
61.吳怡貞,利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究,國立中山
大學環境工程研究所,碩士論文,(2007)。
62.吳政峰,溫度與溼度效應對光催化分解氣相揮發性有機物之影響,國立中山大學
環境工程研究所,博士論文,(2005)。

63.巫菁芳,奈米二氧化鈦覆載於銀擔體之複合物光觸媒 對丙酮去除處理之研究,
國立交通大學環境工程研究所,碩士論文,(2007)。
64.李佩珊,孔洞性三氧化鎢薄膜光分解水電極之製備與研究,國立成功大學化學工
程所,碩士論文,(2007)。
65.林冠宇,電化學沈積之氧化亞銅其結晶結構及光電化學性質,國立成功大學化學
工程所,碩士論文,(2005)。
66.施敏,半導體元件物理學,交通大學出版,(2008)。
67.洪雨利,溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應
研究,國立中山大學環境工程研究所,碩士論文,(2004)。
68.高濂,奈米光觸媒,五南出版,(2004)。
69.陳一誠,金屬氧化物半導體型氣體感測器,材料與社會68期62~66頁(1992)。
70.黃昭銘,電漿法光觸媒薄膜成長技術與反應效能分析研究,工業技術研究院分包
學界研究計畫期末報告,(2006)。
71.楊于紹,陽極氧化法製備奈米二氧化鈦薄膜之研究,國立中興大學材料工程所,
碩士論文,(2009)。
72.楊宗燁,奈米二氧化鈦基系統之氣體感測行為研究,大同大學材料工程研究所,
博士論文,(2005)。
73.蔡育倫,以UV-LED/TIO2系統偵測一氧化碳氣體之研究,中國文化大學勞動研
究所,碩士論文,(2007)。
74.鄭立勳,反應式直流磁控濺鍍製備氮摻雜氧化銦錫薄膜之光電化學特性,國立高
雄海洋科技大學,碩士論文,(2009)。
75.鄭佳倩,以自由基捕捉/螢光法量測光催化反應中氫氧自由基之生成,國立高雄第
一科技大學環境與安全衛生工程系,碩士論文,(2007)。

76.蘇昱帆,光電半導體引發甲基橙反應之研究,國立成功大學化學工程所,碩士論
文,(2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top