跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李鴻昇
研究生(外文):Hung-Sheng Li
論文名稱:以高密度電漿化學氣相沉積系統製備氫化矽晶薄膜之薄膜特性與品質之研究
論文名稱(外文):The properties and quality of hydrogenated crystalline silicon thin films prepared by the HDP-CVD
指導教授:楊茹媛楊茹媛引用關係
指導教授(外文):Ru-Yung Yang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:材料工程所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:98
中文關鍵詞:微晶矽高密度電漿化學式氣相沈積薄膜太陽能電池
外文關鍵詞:Microcrystalline siliconHigh density plasma chemical vapor depositionThin film solar cell
相關次數:
  • 被引用被引用:2
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用高密度電漿化學式氣相沈積(High density plasma chemical vapor deposition, HDPCVD)製備一氫化晶矽(Hydrogen silicon, Si:H)薄膜。本實驗藉由改變不同氫氣流量稀釋比(R= H2/SiH4)、不同的製程腔體壓力與不同的上電極輸入功率,以探討不同製程參數對氫化矽薄膜之影響。另外,本研究更藉由場放射式顯微鏡(Field Emission Scanning Electron Microscope, FESEM),觀察斷面沉積型態與沉積厚度、傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)分析微晶矽薄膜結構之鍵結(Local bond configuration)及特性,並利用微拉曼光譜分析儀(micro Raman spectrum)分析於不同功率、氫氣流量下所製備出之微晶矽薄膜的結晶度(Crystallinity, Xc)。其中,霍爾量測(Hall measurement)係用以測量其電特性。
In this study, the hydrogen silicon thin films were prepared by the high density plasma chemical vapor deposition. The experiments were designed with the different process parameters such as the different hydrogen (H2) gas flows, different pressure of cavity and different radio frequencies (RF) power of upper electrode to discuss the effects of hydrogen silicon thin films. In the analyzing parts, the Field Emission Scanning Electron Microscope was used to observe the deposition type and the thickness of cross section; the Fourier transform infrared spectroscopy was used to discuss the properties of local bond configuration; and the micro Raman spectrum was used to analyze the crystallinity of hydrogen silicon thin films prepared by the different process with different hydrogen (H2) gas flows and different radio frequencies (RF) power. Finally, Hall measurement was used to measure the electrical properties of the hydrogen silicon thin films.
摘要......I
Abstract......II
謝誌......III
目錄......IV
表目錄......VI
圖目錄......VII
第1章 簡介......1
1.1研究背景......1
1.2研究目的及動機......3
第2章 基礎理論......5
2.1矽之結晶型態......5
2.2微晶矽之基本定義與反應機制......7
2.2.1微晶矽基本定義......7
2.2.2微晶矽的反應機制......9
2.3電漿原理......13
2.3.1電漿之形成......13
2.3.2電漿中的碰撞......14
2.3.3電漿氣相沈積法......18
2.4相關研究回顧......19
2.4.1以電漿增強型化學式氣相沈積製備之氫化矽晶薄膜文獻......19
2.4.2 氫化矽晶薄膜相關X-Ray文獻......20
2.4.2 氫化矽晶薄膜相關Raman文獻......21
2.4.3 氫化矽晶薄膜相關FTIR文獻......22
第3章 實驗步驟與分析方法......24
3.1實驗步驟......24
3.2實驗儀器......26
3.2.1高密度化學氣相沈積(HDP-CVD)......26
3.3分析儀器......28
3.3.1拉曼光譜分析(Raman spectroscopy)......28
3.3.3X光繞射儀(X-ray diffraction)......31
3.3.4傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy)......33
3.3.5場發射式電子顯微鏡(Field Emission Scanning Electron Microscope)......40
3.3.6霍爾量測(Hall measurement)......43
3.3.7紫外光/可見光吸收光譜儀(UV-visible spectroscopy)......47
3.3.8 N&K 薄膜特性分析儀......49
第4章 實驗分析與結果討論......53
4.1實驗分析......53
4.1.1場放射式電子顯微鏡之分析......53
4.1.2 X光繞射結晶性之分析......61
4.1.3拉曼光譜結晶度之分析......63
4.1.4傅利葉轉換紅外線光譜儀鍵結擺動分析......67
4.1.6霍爾量測系統分析載子移動率之變化......74
4.1.7 N&K 薄膜特性分析儀......77
4.1.8可見光/紅外光之材料波長分析......82
第5章 結論與未來展望......88
5.1結論......88
5.2未來展望......89
參考文獻......90
作者簡介......97

1. 王正和,(2001),工業材料雜誌,第119期,第159-161頁。
2. http://www.moeaboe.gov.tw/Default.aspx
3. 斐文,(2006),工業材料雜誌,第240期,第141-145頁。
4. 林明獻,(2007),太陽電池技術入門,全華圖書。
5. 戴寶通、鄭晃忠,(2008),太陽能電池技術手冊,台灣電子材料與元件協會,新竹。
6. H. Fujiwara, (2002), “Nucleation mechanism of microcrystalline Si from amorphous phase,” Nano. Mater. Sci. Tech., vol. 2, pp. 26.
7. Joydeep Dutta, Ulrich Kroll, Patrick Chabloz, Arvind Shah, A. A. Howing, J.-L. Dorier and Ch. Hollensten, (1992), “Dependence of intrinsic stress in hydrogenated amorphous silicon on excitation frequency in a plasma-enhanced chemical vapor deposition process”, J. Appl. Phys. 72 (7), 3220.
8. J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, J.A.A. Selvan, N.P. Vaucher, Ch. Hof, D. Fischer,H. Keppner, A. Shah, K.-D. Ufert, P. Giannoules, J. Koehler, (1996), “On the Way Towards High Efficiency Thin?Film Silicon Solar Cells by the Micromorph Concept”, Mater. Res. Soc. Symp. Proc. 420, 3.
9. E. A. Edelberg, Andrew Perry Neil Benjamin and Eray S. Aydil, (1999), “Compact floating ion energy analyzer for measuring energy distributions of ions bombarding radio-frequency biased electrode surfaces”, Review of Scientific Instruments, 70(6), 2689
10. J. Wu, Jia-Min Shieh, Bau-Tong Dai, and YewChung Sermon Wu, (2004), “Synthesis of Microcrystalline Silicon at Room Temperature Using ICP”, Electrochemical and Solid-State Letters, 7(6), G128-G130.
11. 林成,(2006),應用於太陽能電池之低溫多晶矽薄膜研究,崑山科技大學機械工程系碩士論文,台南。
12. 邱宥浦,(2007),氮化矽薄膜鑲埋奈米晶矽應用於量子點材料之研究,屏東科技大學材料工程所碩士論文,屏東。
13. H. Fujiwara, M. Kondo, and A. Matsuda, (2001), “Real-time spectroscopic ellipsometry studies of the nucleation and grain growth processes in microcrystalline silicon thin films,” Phys. Rev. B, vol. 63, pp.115306-1-6.
14. 蕭宏,(2005),半導體製程技術導論,歐亞書局股份有限公司、學銘圖書有限公司。
15. A. Matsuda, and T. Goto, (1990), “Role of surface and growth-zone reactions in the formation process of µc-Si:H,” Mater. Res. Soc. Symp. Proc., vol. 164, pp. 3-6.
16. P. R. Cabarrocas and S. Hamma, (1999), “Microcrystalline silicon growth on a-Si:H: effects of hydrogen,” Thin Solid Films, vol. 337, pp. 23-26.
17. H. L. Hsiao, H. L. Hwang, A. B. Yang, L. W. Chen, and T. R. Yew, (1999), “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution,” App. Sur. Sci., vol. 142, pp. 316-321.
18. K. C. Wang, and H. L. Hwang, (1995), “Microstructures of low temperature deposited polycrystalline silicon with micrometer grains,” J. Appl. Phys., vol. 77, pp. 6542-6548.
19. L. Wang, and H. S. Reehal, (1999), “Low temperature growth of p-type crystalline silicon films by ECR plasma CVD,” Thin Solid Films, vol. 343, pp. 571-574.
20. S. A. M. Quaid, S. Holgado, J. Garrido, J. Martínez and J. Piqueras, (1997), “Passivation structural modification and etching of amorphous silicon in hydrogen plasmas,” J. Appl. Phys., vol. 81 pp. 7612-7618.
21. 莊子誼,室溫下製備微奈米晶矽之微結構及其光電特性之研究,屏東科技大學材料工程系碩士論文,屏東,(2009)。
22. 吳嘉鴻,(2002),ICPCVD成長微晶矽薄膜之成長機制。國立交通大學材料科學與工程學系碩士論文,新竹。
23. H. F. Sterling, R. C. G. Swann (1965), “Chemical vapour deposition promoted by r.f. discharge.”, Solid-State Electronics, 8(8), 653-654.
24. K. C. Wang and H. L. Hwang, (1994), “Sulfurization of SiO2 surface for polycrystalline silicon growth on SiO2/Si structure at 250°C,” Appl. Phys. Lett., vol. 64, pp. 1024-1026.
25. Y. B. Park, and S. W. Rhee, (2001), “Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface,” J. Appl. Phys., vol. 90, pp. 217-221.
26. E. Vallat-Sauvain, U. Kroll, J. Meier, and A. Shah, J. Pohl, (2000), “Evolution of the microstructure in microcrystalline silicon preparedby very high frequency glow-discharge using hydrogen dilution”, J. Appl. Phys., 87, 3137
27. P. Alpuim, V. Chu., J. P. Conde, (1999), “Amorphous and microcrystalline silicon films grown at low temperature by radio-frequency and hot-wire chemical vapor deposition”, J. Appl. Phys. 86, 3812.
28. G. Lucovsky, R. J.Nemanich, and J. C. Knight, (1979), “Structural interpretation of the vibrational spectra of a-Si: H alloys”, Phy. Rev. B, 19,2064
29. Y. J. Chabal and K. Raghavachari, (1984), “Charge distribution in GaAs‐Ga1−xAlxAs heterostructures under an external magnetic field”, Phys. Rev. Lett., 53, 282
30. V. A. Burrows, Y. J. Chabal, G. S. Higashi, K. Raghavachari, and S. B. Christman, (1988), “Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology”, Appl. Phys. Lett., 53, 998
31. Y. J. Chabal, G. S. Higashi, K. Raghavachari, and V. A. Burrows, (1989), “Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology”,J. Vac. Sci. Technol. A, 7, 2104.
32. U. Jansson and K. J. Uram, (1989), “The adsorption of hydrogen on Si(111)‐7×7 as studied by multiple internal reflection spectroscopy”, J. Chem. Phys., 91, 7978 .
33. K. J. Uram and U. Jansson, (1989), “Comparison of disilane and hydrogen adsorption on Si(111)-7×7”, J. Vac. Sci. Technol. B, 7, 1176.
34. Y. J. Chabal, G. S. Higashi, and S. B. Christman, (1983), “Hydrogen chemisorption on Si(111)-(7×7) and -(1×1) surfaces. A comparative infrared study”, Phys. Rev. B, 28, 4472.
35. P. Jakob, P. Dumas, and Y. J. Chabal, (1991), “Influence of silicon oxide on the morphology of HF‐etched Si(111) surfaces: Thermal versus chemical oxide”, Appl. Phys. Lett., 59, 2968.
36. P. Jakob, Y. J. Chabal, and K. Raghavachari, (1991), “Lineshape analysis of the Si---H stretching mode of the ideally H-terminated Si(111) surface: the role of dynamical dipole coupling”, Chem. Phys. Lett., 187, 325 .
37. M. H. Brodsky, M. Cardona, and J. J. Cuomo, (1977), “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, 16, 3556 .
38. K. J. Uram and U. Jansson, (1991), “The adsorption of disilane on Si(111)-7 × 7 as studied by multiple internal reflection spectroscopy”, Surf. Sci., 249, 105 .
39. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, (1998), “Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces”, J. Vac. Sci.Technol. A, 16, 3199.
40. J. A. Glass, Jr., E. A. Wovchko, and J. T. Yates, Jr. , (1996), “Reaction of atomic hydrogen with hydrogenated porous silicon — detection of precursor to silane formation”, Surf. Sci., 348, 325.
41. M. H. Brodsky, Manuel Cardona and J. J. Cuomo, (1977) , “Infrared and Raman spectra of the silicon hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Physical Review B, 16(8), 3556.
42. A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, (1992), “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Physical Review B, 45(23), 13367.
43. A. H. Mahan, D. L. Williamson, B. P. Nelson and R. S. Crandall, (1989), “Characterization of microvoids in device-quality hydrogenated amorphous silicon by small-amgle x-ray scattering and infrared measurements”, Physical Review B, 40(17), 12024
44. 汪建民,(1998),材料分析,中國材料科學學會。
45. T. Kaneko, K. Onisawa, M. Wakagi, Y. Kita, and T. Minemura, (1993), “Crystalline fraction of microcrystalline silicon films prepared by plasma-enhanced chemical vapor deposition using pulsed silane flow,” J. J. Appl. Phys., vol. 32, pp. 4907-4911.
46. Y. He, Chenzhong Yin, Guangxu Cheng, Luchun Wang, Xiangna Liu, and G. Y. Hu, (1994), “The structure and properties of nanosize crystalline silicon films”, J. Appl. Phys., 75, 797.
47. J. Bailat, E. V. Sauvain, L. Feitknecht, C. Droz, and A. Shah, (2003), “Microstructure and open-circuit voltage of n–i–p microcrystalline silicon solar cells,” J. Appl. Phys., vol. 93, pp. 5727-5732.
48. A. L. Patterson, (1939), “The scherrer formula for x-ray particle size determination,” Phys. Rev., vol. 56, pp. 978-982.
49. 陳偉修,(2009) ,利用HDP-CVD製備微晶矽薄膜之微結構及其光電特性之研究,屏東科技大學材料工程系碩士論文,屏東。
50. 邏吉宗,(2005)薄膜科技與應用,全華科技圖書股份有件公司。
51. 張智閔,(2007),利用電沈積方法製備CIS太陽能電池結構,國立成功大學化學系碩士論文,台南。
52. 凃在根,2007,鋁金屬誘發結晶法製備多晶矽薄膜與光電特性之研究,崑山科技大學機械工程系碩士論文,台南。
53. 徐政傑,2009,以低溫奈米鋁金屬誘發技術製備多晶矽鍺與多晶矽薄膜及其光電特性之研究,南台科技大學光電工程系碩士論文,台南。
54. G. Yue, J. D. Lorentzen, Jing Lin, Daxing Han and Qi Wang, (1999), “Photoluminescence and Raman studies in thin-film materials : Transition from amorphous to microcrystalline silicon”, Appl. Phys. Lett., 75, 492
55. S. Sumiya, Yuko Mizytani, Ryohei Yoshida, Masaru Hon, Toshio Goto, Massfumi lto, Tsutomu Tskada and Seiji Samukawa, (2000), “Plasma diagnostics and low-temperature deposition of microcrystalline silicon films in ultrahigh-frequency silane plasma”, J. Appl. Phys., 88, 576.
56. P. Alpuim, V.Chu and J. P. Conde, (2001), “Doping of amorphous and microcrystalline silicon films deposited at low substrate temperature by hot-wire chemical vapor deposition”, J. Vac. Sci. Technol. A, 19(5), 2328.
57. C.-M. Chiang, S. M. Gates, Szetsen S. Lee, M. Kong and F. Bent, (1997), “Etching, Insertion, and Abstraction Reactions of Atomic Deuterium with Amorphous Silicon Hydride Films”, J. Phys. Chem. B, 101, 9537-9547.
58. A. von Keudell and J. R. Abelson, (1998), “The interaction of atomic hydrogen with very thin amorphous hydrogenatedsilicon films analyzed using in situ real time infrared spectroscopy:Reaction rates and the formation of hydrogen platelets”, J. Appl. Phys., 84, 489.
59. A. Matsuda, (1983), “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma”, J. Non-Crys. Solids, 59/60, 767.
60. J. Tauc, R.Grigorvici, A. Vancu, (1966), “Optical Properties and Electronic Structure of Amorphous Germanium”, Phys. Stat. Sol. 15, 627.
61. R. I. Badran , F. S. A. Hazmi , S. A. Heniti , A. A. A. Ghamdi , J. Li, and S. Xiong, (2009), “A study of optical properties of hydrogenated microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition technique at different conditions of excited power and pressure,” Vacuum, vol. 83, pp. 1023-1030.
62. R. Zhang, X. Y. Chen, K. Zhang, and W. Z. Shen, (2006), “Photocurrent response of hydrogenated nanocrystalline silicon thin films,” J. Appl. Phys., vol. 100, pp. 104310-1.
63. 黃子軒,(2004),快速沈積低溫微晶矽與薄膜電晶體上銅污染之探討,中山大學物理系碩士論文,高雄。
64. S. Agarwal, A. Takano, M. C. M. van de Sanden, Dimitrions Maroudas, Eray S. Aydil, (2002), “Abstraction of atomic hydrogen by atomic deuterium from an amorphous hydrogenated silicon surface”, J. Chem. Phys., 117, 1085.
65. 陳泊名,(2006),以橢圓儀檢測氧化鋅薄膜特性之探討,南台科技大學機械工程系論文,台南。
66. http://www.nano.nsysu.edu.tw/nano/regulation.htm

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top