跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周昇韋
研究生(外文):Sheng-Wei Chou
論文名稱:探討複合半導體TiO2/SnO2階梯式能階對染料敏化太陽能電池之影響
論文名稱(外文):The Effect of Stepping Band-Gap of Composing TiO2/SnO2 Semiconductor on the Dye-Sensitized Solar Cells
指導教授:周春禧
指導教授(外文):Chuen-Shii Chou
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
中文關鍵詞:染料敏化太陽能電池二氧化鈦二氧化錫複合粉體
外文關鍵詞:Dye-Sensitized Solar CellTiO2SnO2Composing Semiconductor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:599
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為應用n型半導體SnO2於染料敏化太陽能電池的工作電極之研究。利用微粉機械融合系統製備不同比例之TiO2/SnO2複合粉體。藉由TiO2能階導帶比SnO2能階導帶高的關係,形成階梯式能階,減少電子與電動對再複合,使短度電流和光電轉換效率提升至13.48 mA/cm2及5.38%。另外,本實驗探討TiO2/SnO2複合半導體薄膜浸泡TiCl4溶液經過燒結後,能阻隔FTO導電玻璃與電解液的接觸,亦可使複合半導體薄膜與電解液間減少電子電洞對再結合的機率,使最佳短度電流從13.48 mA/cm2提升至15.62 mA/cm2,光電轉換效率從5.38%提升至6.15%。
This study investigates the applicability of n-type semiconductor of SnO2 on the working electrode in a dye-sensitized solar cell (DSSC).The working electrode is to prepare the different ratios composite particles of TiO2(P25) and SnO2 by using the Mechanofusion system. To reduce the recombination of electronic and electric by using the relationship of TiO2 conduction band is higher than SnO2 conduction band can form stepping band-gap which improves the short-circuit photocurrent to be 13.48 mA/cm2 and photoelectric conversion efficiency to be 5.38%. Moreover, this study also probe the compound semiconductor films TiO2/SnO2 which immerses in the TiCl4 aqueous solutions before sintering, not only can block the contact of FTO conductive glass and the electrolyte, but also have compound semiconductor films and the electrolyte, to reduce the probability of recombination between electronic and electric. The best short-circuit current will upgrade from 13.48 mA/cm2 to 15.62 mA/cm2 and the power conversion efficiency will upgrade from 5.38% to 6.15% as well.
摘要 I
ABSTRACT II
謝誌 III
目錄 V
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1.1 前言 1
1.1.1 太陽能源 1
1.1.2 太陽能電池發展背景 2
1.2 研究動機及目的 2
第2章 文獻回顧 8
2.1 TIO2的簡介 8
2.2 釕金屬錯化合物染料(RU-BASED DYE) 9
2.3 N型半導體 10
2.4 染料敏化太陽能電池基本結構及光電轉換原理 11
2.4.1 太陽能電池之I-V特性曲線分析 13
2.4.2 染料敏化太陽能電池的歷史與現況及優勢 14
第3章 實驗材料及設備 23
3.1 實驗材料 23
3.1.1 二氧化鈦 (TiO2) 23
3.1.2 二氧化錫 (SnO2) 23
3.1.3 分散劑及介面活性劑 23
3.1.4 氟摻雜氧化錫層之導電玻璃 (FTO) 23
3.1.5 四氯化鈦 (TiCl4) 23
3.1.6 釕金屬錯化合物 (N719) 24
3.1.7 電解液 24
3.2 實驗設備 24
3.2.1 微粉機械融合系統 24
3.2.2 精密量測天秤 25
3.2.3 場發射掃描電子顯微鏡 25
3.2.4 能量散佈光譜儀 26
3.2.5 離子濺鍍機 26
3.2.6 紫外光/可見光光譜分析儀 26
3.2.7 X光粉末繞射儀 27
3.2.8 微量吸管 28
3.2.9 四點探針 28
3.2.10 原子力顯微鏡(AFM) 29
3.2.11 高溫爐 29
3.2.12 超音波震盪洗淨器 29
3.2.13 電磁加熱攪拌器 29
3.2.14 旋轉塗膜機 30
3.2.15 熱循環烘箱 30
3.2.16 XES-310S 300W太陽光模擬器與I-V量測系統 30
第4章 實驗方法與步驟 45
4.1 實驗規劃及製備 45
4.1.1 FTO導電玻璃 45
4.1.2 工作電極 45
4.1.3 相對電極 47
4.1.4 DSSC封裝 47
4.2 實驗結果檢測規畫 47
4.2.1 奈米TiO2、SnO2粉末分析與光學檢測 47
4.2.2 TiO2/SnO2複合粉體檢測與分析 47
4.2.3 半導體薄膜檢測與分析 47
4.2.4 染料敏化太陽能電池之封裝、檢測與分析 48
第5章 結果與討論 53
5.1 TIO2、SNO2與TIO2/SNO2複合粉體材料分析與光學檢測 53
5.1.1 巨觀環境下粉末的觀察 53
5.1.2 TiO2、SnO2與TiO2/SnO2複合粉體之檢測與光學分析 53
5.2 半導體薄膜檢測與分析 54
5.2.1 工作電極薄膜表面微結構分析 54
5.2.2 工作電極薄膜之材料分析 55
5.2.3 工作電極薄膜之光學檢測 55
5.3 DSSC光電轉換效率之量測分析 55
5.3.1 DSSC電性與效率量測分析 55
5.3.2 經TiCl4處理後DSSC電性與效率量測分析 56
第6章 結論及建議 71
6.1 結論 71
6.2 建議 71
參考文獻 72
作者簡介 78

1. BP Statistical Review of World Energy 2007,2007,取自:http://www.bp.com/。
2. 台灣區電機電子工業,2006,「新能源產業」,取自:http://www.teema.org.tw/publish/moreinfo.asp?autono=2978。
3. 徐瑞鐘,2006,「商機潛力看好-太陽光電科技中心積極開發新世代太陽電池」,工業技術與資訊,第176卷,第9-11頁。
4. NASA, 2009, Goddard Space Flight Center Scientific Visualization Studio.
5. 吳志明,2005,「Nanotechnology in energy applications」,工業技術研究院能源與資源研究所,第6頁。
6. 劉建軍、何代平、蔡鍍昌、林發蓉、余曉鵬,2006,「P-25 的結構相變化和光催化活性」,化學工業與工程,第23卷,第2期,第106-109頁。
7. M. Grätzel, 2001, “Photoelectrochemical cells,” Nature, Vol. 414, No. 15, pp.338-344.
8. 王桂強,傅忠君,2005,「染料敏化納晶TiO2太陽能電池」,染料與染色,第42卷,第5期,第1-5頁。
9. 行政院國家科學委員會,2002,科學發展,349期。
10. 工研院產業經濟與資訊服務中心,2007,「薄膜太陽能電池技術發展潛力分析」,工研院產業經濟與資訊服務中心。
11. D. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, 2007, “High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte”, Advanced Materials, Vol. 19, pp 1133-1137.
12. I. Bedja, S. Hotchandani, P. V. Kamat, 1994, “Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis (2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium(II) Complex”, J. Phys. Chem., Vol. 98, No. 15, pp. 4133–4140.
13. C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, 2001, “Electron Injection and Recombination in Ru(dcbpy)2(NCS)2 Sensitized Nanostructured ZnO”, J. Phys. Chem. B, Vol. 105, No. 24, pp. 5585–5588.
14. A. H. C. Chan, C. K. Chan, J. P. Barford, J. F. Porter, 2003, “Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater”, Water Research, Vol. 37, No. 5, pp. 1125-1135.
15. C. Anderson, A. J. Bard, 1995, “An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis”, J. Phys. Chem., Vol. 99, No. 24, pp. 9882-9885.
16. M. R. Hoffmann, S. T. Martin, W. Chol, D. W. Bahnemann, 1995, “Environmental applications of semiconductor photocatalysis”, Chem. Rev., Vol. 95, No. 1, pp. 69-96.
17. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, 1987, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, J. Am. Chem. Soc., Vol. 109, No. 12, pp. 3639-3646.
18. N. H. Dong, L. B. Ha, K. S. Jae, J. C. Hwan, L. J. Hyeon, and P. Sung, 1998, “Preparation of ultrafine crystalline TiO2 powder from aqeous TiCl4 solution by precipitation”, Jpn. J. Appl. Phys., Vol. 37, No. 8, pp. 4603.
19. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, and G. Madras, 2004, “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity”, Langmuir, Vol. 20, No. 7, pp. 2900-2907.
20. R. L. Penn, J. F. Banfield, 1999, “Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania”, American Mineralogist, Vol. 84, No. 5-6, pp. 871-876.
21. K. M. Reddy, S. V. Manorama, A. R. Reddy, 2003, “Bandgap studies on anatase titanium dioxide nanoparticles”, Mater. Chem. and Phy., Vol. 78, No. 1, pp. 239-245.
22. A. L. Linsebigler, G. Lu, and J. T. Yates, 1995, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chem. Rev. Vol. 95, No. 3, pp. 735-758.
23. R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, and R. J. D. Tilley, 1991, “Structural investigation of titanium dioxide photocatalysts”, Journal of Solid State Chemistry, Vol. 92, No. 1, pp. 178-190.
24. K. V. R. Chary, T. Bhaskar, K. K. Seela, K. S. Lakshmi, K. R. Reddy, 2001, “Characterization and reactivity of molybdenum oxide catalysts supported on anatase and polymorphs of titania”, Applied Catalysis A, Vol. 208, No.1-2 , pp. 291-305.
25. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, and S. Ito, 2000, “ A patterned TiO2/SnO2 bilayer type photocatalyst”, J. Phys. Chem. B, Vol. 104, No. 19, pp. 4585-4587.
26. 張正華、李陵嵐、葉楚平、楊平華,2007,「有機與塑膠太陽能電池」,五南圖書出版股份有限公司,第245-256頁。
27. 童永樑,「釕金屬染料在染料敏化太陽電池所扮演的關鍵性角色」,工業材料雜誌,第255卷,第109-123頁。
28. J. Bandara, H. Weerasinghe, 2005, “Solid-state dye-sensitized solar cell with p-type NiO as a hole collector”, Solar Energy Materials & Solar Cells, Vol. 85, No. 3, pp. 385–390.
29. P. V. Kamat, I. Bedja, S. Hotchandani, L. K. Patterson, 1996, "Photosensitization of Nanocrystalline Semiconductor Films. Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias", J. Phys. Chem., Vol. 100, No. 12, pp 4900–4908.
30. S. Ferrere, A. Zaban, B. A. Gregg, 1997, "Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives", J. Phys. Chem. B, Vol. 101, No. 23, pp. 4490–4493.
31. P. Hoyer, H. Weller, 1995, "Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films", J. Phys. Chem., Vol. 99, No. 38, pp. 14096–14100.
32. H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, 1997, "High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes", J. Phys. Chem. B, Vol. 101, No. 14, pp. 2598–2601.
33. K. Sayama, H. Sugihara, H. Arakawa, 1998, "Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye", Chem. Mater., Vol. 10, No. 12, pp. 3825–3832.
34. F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Grätzel, D. Gal, S. Rühle, D. Cahen, 2001, "Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States", J. Phys. Chem. B, Vol. 105, No. 27, pp 6347–6352.
35. S. Chappel, A. Zaban, 2002, "Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids", Solar Energy Materials and Solar Cells, Vol. 71, No. 2, pp 141-152.
36. Y. Liu, J. B. Yang, W. Yang, T. Xie, Y. Bai, T. Li, 2000, "Influence of hydrothermal temperature on structures and photovoltaic properties of SnO2 nanoparticles", J. Nanopart. Res., Vol. 2, No. 3, pp 309-313.
37. W. P. Tai, 2001, "Photoelectrochemical properties of SnO2/TiO2 coupled electrode sensitized by a mercurochrome dye", Mater. Lett., Vol. 51, No. 5, pp 451-454.
38. C. Nasr, P. V. Kamat, S. Hotchandani, 1998, "Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of the SnO2/TiO2 Coupled System with a Ruthenium Polypyridyl Complex", J. Phys. Chem. B, Vol. 102, No. 49, pp 10047–10056.
39. W. P. Tai, K. Inoueb, J. H. Oh, 2002, "Ruthenium dye-sensitized SnO2/TiO2 coupled solar cells", Sol. Energy. Mater. Sol. Cells, Vol. 71, No.4, pp 553-557.
40. N. Papageorgiou, M. Grätzel, P. P. Infelta, 1996, “On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells”, Solar Energy Materials and Solar Cells, Vol. 44, No. 4, pp. 405-438.
41. 張哲、周保學、葛偉杰、熊必濤、鄭青、蔡偉,2005,「染料敏化納米 薄膜太陽能電池中的電荷復合」,科學通報,第50卷,第18期,第1929-1934頁。
42. J. V. D. Lagemaat, N. G. Park, A. J. Frank, 2000, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques”, J. Phys. Chem. B, Vol. 104, No. 9, pp. 2044-2052.
43. M. Cho, H. Chung, W. Choi, J. Yoon, 2004, “Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection”, Water Research, Vol. 38, No. 5, pp. 1069-1077.
44. S. Horikoshi, H. Hidaka, N. Serpone, 2002, “Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions”, Environ. Sci. Technol., Vol. 36, No. 6, pp. 1357-1366.
45. S. Horikoshi, A. Saitou, H. Hidaka, N. Serpone, 2003, “ Environmental Remediation by an Integrated Microwave/UV-Illumination Method. V. Thermal and Nonthermal Effects of Microwave Radiation on the Photocatalyst and on the Photodegradation of Rhodamine-B under UV/Vis Radiation”, Environ. Sci. Technol., Vol. 37, No. 24, pp. 5813-5822.
46. S. Horikoshi, F. Hojo, H. Hidaka, N. Serpone, 2004, “Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 8. Fate of Carboxylic Acids, Aldehydes, Alkoxycarbonyl and Phenolic Substrates in a Microwave Radiation Field in the Presence of TiO2 Particles under UV Irradiation”, Environ. Sci. Technol., Vol. 38, No. 7, pp. 2198-2208.
47. M. Anpo, M. Takeuchi, K. Ikeue, S. Dohshi, 2002, “Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts”, Current Opinion in Solid State and Mater. Sci. Vol. 6, No. 5, pp. 381-388.
48. M. Anpo, M. Takeuchi, 2003, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation” Journal of Catalysis, Vol. 216, No. 1-2, pp. 505-516.
49. P. Serp, P. Kalck, R. Feurer, 2002, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials”, Chem. Rev., Vol. 102, No. 9, pp. 3085-3128.
50. A. Yamakata, T. Ishibashi, H. Onishi, 2002, “Electron-and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy”, J. Phys. Chem. B, Vol. 106, No. 35, pp. 9122-9125.
51. 高峰、成曉玲、胡社軍、曾鵬、謝光榮,2006,「染料敏化納米晶 太陽能電池研究進展」。廣州化工,第34卷,第1期,第8-11頁。
52. A. Zaban, S. Ferrere, B. A. Gregg, 1998, “Relative energetics at the semiconductor/sensitizing dye/electrolyte interface”, J. Phys. Chem. B, Vol.102, No. 2, pp. 452-460.
53. 莊家琛,1997,「太陽能工程-太陽能電池」,全華科技圖書股份有限公司,第3-8頁。
54. 尤如瑾,2005,「世界太陽光電產業現況與展望」,機械工業技術與市場資訊專輯,第263卷,第156頁。
55. 蔡松雨,2007,「染料敏化太陽能電池技術介紹」,工業材料雜誌,第241卷,第103-110頁。
56. I. Seigo, N. T. Murakami, P. comte, L. Paul, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, 2008, “Fabrication of thin film dye sensitized solar cells with solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Film, Vol. 516, No. 14, pp. 4613.
57. 劉建惟、薛漢鼎,2009,「太陽能電池檢測技術」,電子月刊,第15卷,第1期,第167-181頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top