跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林承諺
研究生(外文):Cheng-Yan Lin
論文名稱:以功能性金奈米粒子感測活性氧化物與重金屬離子
論文名稱(外文):Functionalized gold nanoparticles as probe for reactive oxygen species and heavy metal ions determination
指導教授:曾韋龍曾韋龍引用關係
指導教授(外文):Wei-Lung Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:108
中文關鍵詞:汞離子葡萄糖活性氧化物金奈米粒子銀離子
外文關鍵詞:glucoseROSgold nanoparticlesHg2+Ag+
相關次數:
  • 被引用被引用:0
  • 點閱點閱:436
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用修飾不同分子的功能性金奈米粒子(Gold nanoparticles﹐AuNPs),藉由AuNPs本身具有高消光係數(Extinction coefficient)和特殊光學性質,開發出活性氧化物(Reactive oxygen species﹐ROS)與重金屬離子感測器。
一、以修飾異硫氰酸螢光素之金奈米粒子作為活性氧化物感測器—應用於血糖之偵測:本篇研究當中,我們利用修飾異硫氰酸螢光素之金奈米粒子(Fluorescein isothiocyanate-gold nanoparticles﹐FITC-AuNPs),可以簡單且靈敏地偵測ROS。當FITC螢光分子吸附在AuNPs表面,因為螢光共振轉移(Fluorescence resonance energy transfer﹐FRET)的原理,FITC分子的螢光訊號大部分都被AuNPs抑制。若我們把2-硫基乙醇(2-Mercaptoethanol﹐2-ME)加入到FITC-AuNPs中,原本吸附在AuNPs表面的FITC分子會被取代出來,而釋放到溶液中,使得螢光強度明顯增加。較為關鍵的是ROS可將兩個2-ME氧化成一個含雙硫鍵(Disulfide bond)的分子,而形成雙硫鍵的結構將無法取代出FITC分子,因此螢光訊號仍被抑制。綜合上述結果,當ROS含量越多,形成含有雙硫鍵的分子越多,而偵測到的螢光訊號相對越低,故可作為ROS感測器。對分析物ROS之最低可偵測濃度(Minimum detectable concentration﹐MDC)分別為:H2O2,1000 nM;超氧陰離子(Superoxide anion),600 nM;氫氧自由基(Hydroxyl radical)。基於此概念,我們開發出一套兩步驟的葡萄糖(Glucose)偵測法:首先,Glucose與其氧化酶(Glucose oxidase﹐GOx)進行反應將產生過氧化氫(Hydrogen peroxide﹐H2O2);接著,將所產生之H2O2與2-ME反應,再透過前面的方法,使用FITC-AuNPs進行偵測,對於Glucose之MDC為1000 nM。藉由本偵測系統亦成功偵測到血清中的Glucose。
二、利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子作為汞離子和銀離子感測器:在第二部分實驗中,我們利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子(Tween 20-citrate-gold nanoparticles﹐Tween 20-citrate-AuNPs),發展出一套快速且具有高選擇性的感測器,可以應用於定量分析Hg2+和Ag+。我們由實驗中發現,檸檬酸鈉包覆的金奈米粒子(Citrate-gold nanoparticles﹐Citrate-AuNPs)修飾上Tween 20界面活性劑,Tween 20分子只是穩固覆蓋在檸檬酸鈉分子上,並未將檸檬酸鈉取代出來。而使用Tween 20界面活性劑主要是保護Citrate-AuNPs可以穩定存在高離子強度溶液中,至於檸檬酸鈉分子是扮演還原劑角色,可將Hg2+或Ag+還原並於AuNPs表面形成金-汞合金(Au-Hg Alloys)或銀殼層(Ag Shell),導致Tween 20分子被迫脫離奈米粒子表面,如此AuNPs無法繼續穩定存在高離子強度溶液中而變為聚集狀態。本篇開發Tween 20-citrate-AuNPs感測器,使用氯化鈉(NaCl)和乙烯二胺四乙酸(Ethylenediaminetetraacetic acid﹐EDTA)分別作為偵測Hg2+和Ag+的遮蔽試劑(Masking agents),其MDC均可達100 nM。此外,使用本系統亦可偵測銀奈米粒子(Silver nanoparticles﹐AgNPs),其MDC為1 pM。據我們所知,本研究為首次利用同一種探針(Tween 20-citrate-AuNPs)即可同時偵測Hg2+和Ag+,並成功透過此系統分析飲用水中Hg2+、Ag+ 和AgNPs,以及海水中Hg2+。

摘要I
目錄IV
圖表目錄VII
縮寫表X

第一章 以修飾異硫氰酸螢光素之金奈米粒子作為活性氧化物感測器—應用於血糖之偵測
一、前言1
二、實驗部分9
2.1、藥品與溶液配製9
2.2、儀器裝置11
2.3、FITC-AuNPs之合成方法13
2.4、ROS和Glucose之配製14
2.5、真實樣品之處理與配製15
三、結果與討論16
3.1、透過抑制螢光之概念偵測H2O216
3.2、探討反應中H2O2與2-ME之莫耳數比23
3.3、FITC-AuNPs對ROS和Glucose進行偵測26
3.4、以FITC-AuNPs偵測血清中Glucose32
四、結論34
五、參考文獻35

第二章 利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子作為汞離子和銀離子感測器
一、前言43
二、實驗部分49
2.1、藥品與溶液配製49
2.2、儀器裝置51
2.3、奈米粒子之合成53
2.4、樣品配製55
2.5、真實樣品之偵測56
三、結果與討論57
3.1、偵測機制之探討57
3.2、證明Au-Hg Alloys和Ag Shell之生成59
3.3、研究Surfactant長度、奈米粒子濃度與離子強度66
3.4、Tween 20-citrate-AuNPs對Hg2+和Ag+之選擇性探討71
3.5、Tween 20-citrate-AuNPs對Hg2+和Ag+之靈敏度探討及真實樣品的應用75
四、結論84
五、參考文獻85
第一章以修飾異硫氰酸螢光素之金奈米粒子作為活性氧化物感測器—應用於血糖之偵測
(1)Caporaso, N. “The molecular epidemiology of oxidative damage to DNA and cancer” J. Natl. Cancer Inst. 2003, 95, 1263-1265.
(2)Wiseman, H.; Halliwell, B. “Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer” Biochem. J. 1996, 313, 17-29.
(3)Magalhaes, L. M.; Segundo, M. A.; Reis, S.; Lima, J.L. “Methodological aspects about in vitro evaluation of antioxidant properties” Anal. Chim. Acta. 2008, 613, 1-19.
(4)Olinski, R.; Gackowski, D.; Foksinski, M.; Rozalski, R.; Roszkowski, K.; Jaruga, P. “Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome” Free Radic. Biol. Med. 2002, 33, 192-200.
(5)Gomes, A.; Fernandes, E.; Lima, J. L. “Fluorescence probes used for detection of reactive oxygen species” J. Biochem. Biophys. Methods 2005, 65, 45-80.
(6)Olojo, R. O.; Xia, R. H.; Abramson, J. J. “Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole” Anal. Biochem. 2005, 339, 338-344.
(7)Li, Y.; Zhu, H.; Trush, M. A. “Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol” Biochim. Biophys. Acta. 1999, 1428, 1-12.
(8)Teranishi, K.; Nishiguchi, T. “Cyclodextrin-bound 6-(4-methoxyphenyl)imidazo[1,2-alpha+/-]pyrazin-3(7H)-ones with fluorescein as green chemiluminescent probes for superoxide anions” Anal. Biochem. 2004, 325, 185-195.
(9)Tang, Y.; Feng, F.; He, F.; Wang, S.; Li, Y.; Zhu, D. “Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative” J. Am. Chem. Soc. 2006, 128, 14972-14976.
(10)Jiang, H.; Ju, H. “Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system” Anal. Chem. 2007, 79, 6690-6696.
(11)Daniel, M. C.; Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chem. Rev. 2004, 104, 293-346.
(12)Xiao, Y.; Pavlov, V.; Levine, S.; Niazov, T.; Markovitch, G.; Willner, I. “Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations” Angew. Chem. Int. Ed. 2004, 43, 4519-4522.
(13)Zayats, M.; Baron, R.; Popov, I.; Willner, I. “Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design” Nano Lett. 2005, 5, 21-25.
(14)Shang, L.; Chen, H.; Deng, L.; Dong, S. “Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design” Biosens. Bioelectron. 2008, 23, 1180-1184.
(15)Shen, Q.; Nie, Z.; Guo, M.; Zhong, C. J.; Lin, B.; Li, W.; Yao, S. “Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator” Chem. Commun. 2009, 929-931.
(16)Lee, H.; Lee, K.; Kim, I.-K.; Park, T. G. “Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species” Adv. Funct. Mater. 2009. 19. 1884-1890.
(17)Li, J.; Han, T.; Wei, N.; Du, J.; Zhao, X. “Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor” Biosens. Bioelectron. 2009, 25, 773-777.
(18)Song, Y.; Cui, K.; Wang, L.; Chen, S. “The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor” Nanotechnology 2009, 20, 105501-105509.
(19)Yao, S.; Yuan, S.; Xu, J.; Wang, Y.; Luo, J.; Hu, S. “A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite” Appl. Clay Sci. 2006, 33, 35-42.
(20)Lee, D. Y.; Park, S. H.; Qian, D. J.; Kwon, Y. S. “Electrochemical detection of hydrogen peroxide via hemoglobin–DNA/pyterpy-modified gold electrode” Current Applied Physics 2009, 9, 232-234.
(21)Wu, Z. S.; Zhang, S. B.; Guo, M. M.; Chen, C. R.; Shen, G. L.; Yu, R. Q. “Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide” Anal. Chim. Acta. 2007, 584, 122-128.
(22)Cui, H.; Wang, W.; Duan, C. F.; Dong, Y. P.; Guo, J. Z. “Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor” Chem. Eur. J. 2007, 13, 6975-6984.
(23)Chen, Y.-M.; Cheng, T.-L.; Tseng, W.-L. “Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles” Analyst 2009, 134, 2106-2112.
(24)Luo, D.; Smith, S. W.; Anderson, B. D. “Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution” J. Pharm. Sci. 2005, 94, 304-316.
(25)Kirihara, M.; Asai, Y.; Ogawa, S.; Noguchi, T.; Hatano, A.; Hiraib, Y. “A mild and environmentally benign oxidation of thiols to disulfides” Synthesis 2007, 3286-3289.
(26)Wang, H.; Wang, Y.; Jin, J.; Yang, R. “Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution” Anal. Chem. 2008, 80, 9021-9028.
(27)Lim, S. Y.; Kim, J. H.; Lee, J. S.; Park, C. B. “Gold nanoparticle enlargement coupled with fluorescence quenching for highly sensitive detection of analytes” Langmuir 2009, 25, 13302-13305.
(28)Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y. “A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples” Anal. Chim. Acta. 2007, 599, 134-142.
(29)Griffin, J.; Singh, A. K.; Senapati, D.; Rhodes, P.; Mitchell, K.; Yu, E.; Ray, P. C. “Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA” Chem. Eur. J. 2009, 15, 342-351.
(30)Munoz Javier, A.; Parak, W. J. “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression” Nano Lett. 2005, 5, 585-589.
(31)Shang, L.; Yin, J.; Li, J.; Jin, L.; Dong, S. “Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma” Biosens. Bioelectron. 2009, 25, 269-274.
(32)Zhao, W.; Chiuman, W.; Lam, J. C.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y. “DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors” J. Am. Chem. Soc. 2008, 130, 3610-3618.
(33)Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. “Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose” Chem. Commun. 2009, 3437-3439.
(34)Ao, L.; Gao, F.; Pan, B.; He, R.; Cui, D. “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles” Anal. Chem. 2006, 78, 1104-1106.
(35)Cheng, P. P.; Silvester, D.; Wang, G.; Kalyuzhny, G.; Douglas, A.; Murray, R. W. “Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters” J. Phys. Chem. B 2006, 110, 4637-4644.
(36)Chen, S.-J.; Chang, H.-T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727-3734.
(37)Wei, H.; Wang, E. “Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection” Anal. Chem. 2008, 80, 2250-2254.
(38)Kawasaki, T.; Akanuma, H.; Yamanouchi, T. “Increased fructose concentrations in blood and urine in patients with diabetes” Diabetes Care 2002, 25, 353-357.
(39)Arky, R. A. “Doctor, is my sugar normal?” N. Engl. J. Med. 2005, 353, 1511-1513.

第二章利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子作為汞離子和銀離子感測器
(1)Campbell, L.; Dixon, D. G.; Hecky, R. E. “A review of mercury in Lake Victoria, East Africa: implications for human and ecosystem health” J. Toxicol. Environ. Health B Crit. Rev. 2003, 6, 325-356.
(2)Wood, C. M.; McDonald, M. D.; Walker, P.; Grosell, M.; Barimo, J. F.; Playle, R. C.; Walsh, P. J. “Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta)” Aquat. Toxicol. 2004, 70, 137-157.
(3)Boening, D. W. “Ecological effects, transport, and fate of mercury: a general review” Chemosphere 2000, 40, 1335-1351.
(4)Holmes, P.; James, K. A.; Levy, L. S. “Is low-level environmental mercury exposure of concern to human health?” Sci. Total Environ. 2009, 408, 171-182.
(5)Ratte, H. T. “Bioaccumulation and toxicity of silver compounds: A review” Environ. Toxicol. Chem. 1999, 18, 89-108.
(6)Karunasagar, D.; Arunachalam, J.; Gangadharan, S. “Development of a collect and punch cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels” J. Anal. At. Spectrom. 1998, 13, 679-682.
(7)Barriada, J. L.; Tappin, A. D.; Evans, E. H.; Achterberg, E. P. “Dissolved silver measurements in seawater” Trends Analyt. Chem. 2007, 26, 809-817.
(8)Li, Y.; Chen, C.; Li, B.; Sun, J.; Wang, J.; Gao, Y.; Zhao, Y.; Chai, Z. “Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS” J. Anal. At. Spectrom. 2006, 21, 94-96.
(9)Chamsaz, M.; Arbab-Zavar, M. H.; Akhondzadeh, J. “Triple-phase single-drop microextraction of silver and its determination using graphite-furnace atomic-absorption spectrometry” Anal. Sci. 2008, 24, 799-801.
(10)Kim, H. J.; Park, D. S.; Hyun, M. H.; Shim, Y. B. “Determination of HgII Ion with a 1,11-Bis(8-quinoyloxy)-3,6,9-trioxaundecane modified glassy carbon electrode using spin-coating technique” Electroanalysis 1998, 10, 303-306.
(11)Mikelova, R.; Baloun, J.; Petrlova, J.; Adam, V.; Havel, L.; Petrek, J.; Horna, A.; Kizek, R. “Electrochemical determination of Ag-ions in environment waters and their action on plant embryos” Bioelectrochemistry 2007, 70, 508-518.
(12)Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Kim, S. B.; Ahn, K. H. “Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media” J. Am. Chem. Soc. 2009, 131, 2040-2041.
(13)Zhan, X. Q.; Qian, Z. H.; Zheng, H.; Su, B. Y.; Lan, Z.; Xu, J. G. “Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II)” Chem. Commun. 2008, 1859-1861.
(14)Lin, Y.-H.; Tseng, W.-L. “Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe” Chem. Commun. 2009, 6619-6621.
(15)Wang, J.; Liu, B. “Highly sensitive and selective detection of Hg(2+) in aqueous solution with mercury-specific DNA and Sybr Green I” Chem. Commun. 2008, 4759-4761.
(16)Li, T.; Shi, L.; Wang, E.; Dong, S. “Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine” Chemistry 2009, 15, 3347-3350.
(17)Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich, D.; Perrin, D. M. “A highly selective DNAzyme sensor for mercuric ions” Angew. Chem. Int. Ed. 2008, 47, 4346-4350.
(18)Koneswaran, M.; Narayanaswamy, R. “Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II)” Sens. Actuators B Chem. 2009, 139, 91-96.
(19)Chen, J.-L.; Zhu, C.-Q. “Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination” Anal. Chim. Acta. 2005, 546, 147-153.
(20)Huang, C.-C.; Chang, H.-T. “Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution” Anal. Chem. 2006, 78, 8332-8338.
(21)Yu, C.-J.; Tseng, W.-L. “Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate” Langmuir 2008, 24, 12717-12722.
(22)Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Ray, P. C. “Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles” J. Am. Chem. Soc. 2008, 130, 8038-8043.
(23)Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. “15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex” J. Am. Chem. Soc. 2007, 129, 244-245.
(24)Lee, J.-S.; Han, M.-S.; Mirkin, C. A. “Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles” Angew. Chem. Int. Ed. 2007, 46, 4093-4096.
(25)Xue, X.; Wang, F.; Liu, X. “One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates” J. Am. Chem. Soc. 2008, 130, 3244-3245.
(26)Yu, C.-J.; Cheng, T.-L.; Tseng, W.-L. “Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change” Biosens. Bioelectron. 2009, 25, 204-210.
(27)Li, D.; Wieckowska, A.; Willner, I. “Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines” Angew. Chem. Int. Ed. 2008, 47, 3927-3931.
(28)Liu, C.-W.; Hsieh, Y.-T.; Huang, C.-C.; Lin, Z.-H.; Chang, H.-T. “Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles” Chem. Commun. 2008, 2242-2244.
(29)Rex, M.; Hernandez, F. E.; Campiglia, A. D. “Pushing the limits of mercury sensors with gold nanorods” Anal. Chem. 2006, 78, 445-451.
(30)Leopold, K.; Foulkes, M.; Worsfold, P. J. “Gold-coated silica as a preconcentration phase for the determination of total dissolved mercury in natural waters using atomic fluorescence spectrometry” Anal. Chem. 2009, 81, 3421-3428.
(31)Lisha, K. P.; Anshup; Pradeep, T. “Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles” Gold Bull. 2009, 42, 144-152.
(32)Barrosse-Antle, L. E.; Xiao, L.; Wildgoose, G. G.; Baron, R.; Salter, C. J.; Crossley, A.; Compton, R. G. “The expansion contraction of gold microparticles during voltammetrically induced amalgamation leads to mechanical instability” New J. Chem. 2007, 31, 2071-2075.
(33)Li, B.; Du, Y.; Dong, S. “DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions” Anal. Chim. Acta. 2009, 644, 78-82.
(34)Darbha, G. K.; Ray, A.; Ray, P. C. “Gold Nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish” ACS Nano 2007, 1, 208-214.
(35)Fan, Y.; Long, Y. F.; Li, Y. F. “A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles” Anal. Chim. Acta. 2009, 653, 207-211.
(36)Huang, C.-C.; Chang, H.-T “Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles” Chem. Commun. 2007, 1215-1217.
(37)Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y.“A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples” Anal. Chim. Acta. 2007, 599, 134-142.
(38)Zhao, W.; Chiuman, W.; Lam, J. C.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y. “DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors” J. Am. Chem. Soc. 2008, 130, 3610-3618.
(39)Huang, C.-C.; Tseng, W.-L. “Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles” Analyst 2009, 134, 1699-1705.
(40)Wei, H.; Chen, C.; Han, B.; Wang, E. “Enzyme colorimetric assay using unmodified silver nanoparticles” Anal. Chem. 2008, 80, 7051-7055.
(41)Yguerabide, J.; Yguerabide, E. E. “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications” Anal. Biochem. 1998, 262, 137-156.
(42)Xie, W.; Su, L.; Donfack, P.; Shen, A.; Zhou, X.; Sackmann, M.; Materny, A.; Hu, J. “Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles” Chem. Commun. 2009, 5263-5265.
(43)Xia, H.; Bai, S.; Hartmann, J.; Wang, D. “Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction” Langmuir 2010, 26, 3585-3589..
(44)Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288-293.
(45)Huang, C.-C.; Tseng, W.-L. “Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor” Anal. Chem. 2008, 80, 6345-6350.
(46)Lubick, N. “Nanosilver toxicity: ions, nanoparticles--or both?” Environ. Sci. Technol. 2008, 42, 8617.
(47)Benn, T. M.; Westerhoff, P. “Nanoparticle silver released into water from commercially available sock fabrics” Environ. Sci. Technol. 2008, 42, 4133-4139.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top