1.Nita, S.; Rughinis, R.; Rusu, N., and Balas, R., ICP-MS computer controlled determination of some trace elements in pharmaceutical containers and substances. Rev.Chim. 2009, 60 (4), 382-386.
2.Wang, T. B.; Wu, J.; Hartman, R.; Jia, X. J., and Egan, R. S., A multi-element ICP-MS survey method as an alternative to the heavy metals limit test for pharmaceutical materials. J. Pharm. Biomed. Anal. 2000, 23 (5), 867-890.
3.Niemela, M.; Kola, H.; Eilola, K., and Peramaki, P., Development of analytical methods for the determination of sub-ppm concentrations of palladium and iron in methotrexate. J. Pharm. Biomed. Anal. 2004, 35 (3), 433-439.
4.Resano, M.; Garcia-Ruiz, E.; Crespo, C.; Vanhaecke, F., and Belarra, M. A., Solid sampling-graphite furnace atomic absorption spectrometry for palladium determination at trace and ultratrace levels. J. Anal. At. Spectrom. 2003, 18 (12), 1477-1484.
5.Jia, X. J.; Wang, T. B., and Wu, J., Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching. Talanta 2001, 54 (4), 741-751.
6.Margui, E.; Van Meel, K.; Van Grieken, R.; Buendia, A.; Fontas, C.; Hidalgo, M., and Queralt, I., Method for the determination of Pd-catalyst residues in active pharmaceutical ingredients by means of high-energy polarized-beam energy dispersive X-Ray fluorescence. Anal. Chem. 2009, 81 (4), 1404-1410.
7.Japanese Pharmacopoeia, Method 22, XIV edn, (Part I), pp. 43–44.
8.British Pharmacopoeia, Appendix, Norwich, UK, 2000, pp. A174–176.
9.European Pharmacopoeia, 5.2 Analytical Methods, Date of Implementation 2005, pp. 103-105.
10.The United States Pharmacopoeia, USP30. Chemical Tests. Limit Tests. <231> Heavy metals, pp. 146–147.
11.Olzan, R. C. B.; Rodrigues, L. F.; de Mattos, J. C. P.; Dressler, V. L., and Flores, T. M. D., Chromium determination in pharmaceutical grade barium sulfate by solid sampling electrothermal atomic absorption spectrometry with Zeeman-effect background correction. Talanta 2007, 74 (1), 119-124.
12.Jia, X. J.; Wang, T. B.; Bu, X. D.; Tu, Q. A., and Spencer, S., Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy. J. Pharm. Biomed. Anal. 2006, 41 (1), 43-47.
13.Lasztity, A.; Kelko-Levai, A.; Varga, I.; Zih-Perenyi, K., and Bertalan, E., Development of atomic spectrometric methods for trace metal analysis of pharmaceuticals. Microchem. J. 2002, 73 (1-2), 59-63.
14.Tu, Q.; Wang, T. B., and Welch, C. J., High-throughput metal screening in pharmaceutical samples by ICP-MS with automated flow injection using a modified HPLC configuration. J. Pharm. Biomed. Anal. 2010, 51 (1), 90-95.
15.Simitchiev, K.; Stefanova, V.; Kmetov, V.; Andreev, G.; Kovachev, N., and Canals, A., Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. J. Anal. At. Spectrom. 2008, 23 (5), 717-726.
16.Lewen, N.; Mathew, S.; Schenkenberger, M., and Raglione, T., A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J. Pharm. Biomed. Anal. 2004, 35 (4), 739-752.
17.Lewen, N.; Schenkenberger, M.; Larkin, T.; Conder, S., and Brittain, H. G., The determination of palladium in fosinopril sodium (monopril) by ICP-MS. J. Pharm. Biomed. Anal. 1995, 13 (7), 879-883.
18.Margui, E.; Fontas, C.; Buendia, A.; Hidalgo, M., and Queralt, I., Determination of metal residues in active pharmaceutical ingredients according to European current legislation by using X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 2009, 24 (9), 1253-1257.
19.Lam, R. and Salin, E. D., Analysis of pharmaceutical tablets by laser ablation inductively coupled plasma atomic emission spectrometry and mass spectrometry (LA-ICP-AES and LA-ICP-MS). J. Anal. At. Spectrom. 2004, 19 (7), 938-940.
20.Ferreira, S. L. C.; Miro, M.; da Silva, E. G. P.; Matos, G. D.; dos Reis, P. S.; Brandao, G. C.; dos Santos, W. N. L.; Duarte, A. T.; Vale, M. G. R., and Araujo, R. G. O., Slurry sampling-an analytical strategy for the determination of metals and metalloids by spectroanalytical techniques. Appl. Spectrosc. Rev. 2010, 45 (1), 44-62.
21.Resano, M.; Vanhaecke, F., and de Loos-Vollebregt, M. T. C., Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry-a critical review with focus on solid sampling and slurry analysis. J. Anal. At. Spectrom. 2008, 23 (11), 1450-1475.
22.Aramendia, M.; Resano, M., and Vanhaecke, F., Electrothermal vaporization-inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples A critical review. Anal. Chim. Acta 2009, 648 (1), 23-44.
23.Huang, S. J. and Jiang, S. J., Determination of Zn, Cd and Pb in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (6), 664-668.
24.Ho, C. Y. and Jiang, S. J., Determination of Cr, Zn, Cd and Pb in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2002, 17 (7), 688-692.
25.Li, P. C. and Jiang, S. J., Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour. Anal. Chim. Acta 2003, 495 (1-2), 143-150.
26.Ni, J. L.; Liu, C. C., and Jiang, S. J., Determination of Ga, Ge, As, Se and Sb in fly ash samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2005, 550 (1-2), 144-150.
27.Li, P. C. and Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics. Anal. Bioanal. Chem. 2006, 385 (6), 1092-1097.
28.Tseng, Y. J.; Liu, C. C., and Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588 (2), 173-178.
29.Tseng, Y. J.; Tsai, Y. D., and Jiang, S. J., Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem. 2007, 387 (8), 2849-2855.
30.Kuo, C. Y.; Jiang, S. J., and Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (6), 636-641.
31.Sahayam, A. C.; Jiang, S. J., and Wan, C. C., Microwave assisted volatilization of silicon as fluoride for the trace impurity determination in silicon nitride by dynamic reaction cell inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 2007, 605 (2), 130-133.
32.Kuo, C. Y. and Jiang, S. J., Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chromatogr. A 2008, 1181 (1-2), 60-66.
33.Sahayam, A. C.; Jiang, S. J., and Chen, F. Y., Separation of trace impurities from boric acid using cloud point extraction for their determination by dynamic reaction cell inductively coupled plasma mass spectrometry. Atom. Spectrosc. 2008, 29 (1), 1-5.
34.Wang, K. E. and Jiang, S. J., Determination of iodine and bromine compounds by ion chromatography/dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Sci. 2008, 24 (4), 509-514.
35.Lin, L. Y. and Jiang, S. J., Determination of sulfur compounds in water samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chin. Chem. Soc. 2009, 56 (5), 967-973.
36.Meeravali, N. N. and Jiang, S. J., A novel cloud point extraction approach using cationic surfactant for the separation and pre-concentration of chromium species in natural water prior to ICP-DRC-MS determination. Talanta 2009, 80 (1), 173-178.
37.May, T. W. and Wiedmeyer, R. H., A table of polyatomic interferences in ICP-MS. Atom. Spectrosc. 1998, 19 (5), 150-155.
38.Tanner, S. D.; Baranov, V. I., and Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectroc. Acta Pt. B-Atom. Spectr. 2002, 57 (9), 1361-1452.
39.黃仕一, “泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於穀物樣品中微量元素之分析應用”, 中山大學碩士論文, 民國 98 年 7 月。
40.Volynsky, A. B. and de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2005, 60 (11), 1432-1441.
41.Wu, Y. L.; Hu, B.; Jiang, Z. C., and Chen, S. Z., Low temperature vaporization for ICP-AES determination of palladium in geological samples using sample introduction of gaseous palladium oxinate. J. Anal. At. Spectrom. 2002, 17 (2), 121-124.
42.Bernhardt, J.; Buchkamp, T.; Hermann, G., and Lasnitschka, G., Transport efficiencies and analytical determinations with electrothermal vaporization employing electrostatic precipitation and electrothermal atomic spectroscopy. Spectroc. Acta Pt. B-Atom. Spectr. 1999, 54 (13), 1821-1829.
43.辜于誠, “微波輔助霧點萃取法結合動態反應管感應耦合電漿質譜儀於水樣中微量鉻、銅、鎘及鉛分析之應用”, 中山大學碩士論文, 民國 99 年 1 月。44.蔡佳穎, “液相層析結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用 ”, 中山大學碩士論文, 民國 98 年 7 月。 1.連森興, “中藥成藥中金屬濃度與人體暴露評估--以苗栗地區為例”, 台北醫學大學碩士論文, 民國 90 年 6 月。2.Agency for toxic substances and disease registry. 2007 priority list of hazardous substances. http://www.atsdr.cdc.gov/cercla/clist-supportdoc.html.
3.盧芬鈴、陳儀驊、曾木全、羅吉方、林哲輝, “中藥材之重金屬檢驗(V)”, 藥物食品檢驗局調查研究年報, 27 : 51-64 2009。4.Chen, B.; Wang, X. R., and Lee, F. S. C., Pyrolysis coupled with atomic absorption spectrometry for the determination of mercury in Chinese medicinal materials. Anal. Chim. Acta 2001, 447 (1-2), 161-169.
5.Huang, R. J.; Zhuang, Z. X.; Tai, Y.; Huang, R. F.; Wang, X. R., and Lee, F. S. C., Direct analysis of mercury in Traditional Chinese Medicines using thermolysis coupled with on-line atomic absorption spectrometry. Talanta 2006, 68 (3), 728-734.
6.Wang, W. L.; Liang, Z. S.; Tan, Y., and Duan, Q. M., Determination of mineral elements in different part of Astragalus membranaceus (Fisch.) by FAAS. Spectrosc. Spect. Anal. 2008, 28 (5), 1168-1171.
7.Martena, M. J.; Van Der Wielen, J. C. A.; Rietjens, I.; Klerx, W. N. M.; De Groot, H. N., and Konings, E. J. M., Monitoring of mercury, arsenic, and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks. Food Addit. Contam. Part A-Chem. 2010, 27 (2), 190-205.
8.Wang, Y.; Feng, F., and Wang, Z., Determination of selected elements in aqueous extractions of a traditional chinese medicine formula by ICP-MS and FAAS: evaluation of formula rationality. Anal. Lett. 2010, 43 (6), 983-992.
9.Chen, B.; Zhuang, Z. X.; Wang, X. R., and Lee, F. S. C., A novel sample introduction technique for the simultaneous determination of As, Se, Ge and Hg in Chinese Medicinal Material. Chem. Res. Chin. Univ. 2001, 17 (4), 400-406.
10.Wu, X. H.; Sun, D. H.; Yang, C. Y.; Zhuang, Z. X., and Wang, X. R., Speciation of 9 trace elements in a traditional Chinese medicine Long Dan Cao by flow injection-inductively coupled plasma mass spectrometry with a focused microwave assisted extraction system. Spectrosc. Spect. Anal. 2002, 22 (1), 75-78.
11.Kou, X. M.; Xu, M., and Gu, Y. Z., Determination of trace heavy metal elements in cortex phellodendri chinensis by ICP-MS after microwave-assisted digestion. Spectrosc. Spect. Anal. 2007, 27 (6), 1197-1200.
12.Shi, L. F.; Xue, D. F.; Xu, H. G.; Liu, H., and Teng, W. F., Determination of Pb, Cd, Hg and As in three sorts of Chinese traditional medicine treating tumor by ICP-MS. Spectrosc. Spect. Anal. 2007, 27 (5), 1036-1037.
13.Yao, Y. H.; Xu, G. H.; Zhang, J. D.; Li, C. F., and Li, D. H., Determination of trace elements in traditional Chinese medicine from Changbai Mountain by ICP-MS. Spectrosc. Spect. Anal. 2008, 28 (5), 1165-1167.
14.Sun, W. M.; Xue, D. F.; Li, H.; Liu, H., and Teng, W. F., Determination of U, Th and Tl in Fourteen Chinese Traditional Medicines by Microwave Digestion-ICP-MS. Spectrosc. Spect. Anal. 2009, 29 (1), 256-258.
15.Chen, F.; Liang, P.; Hu, B.; Zhao, L.; Sun, D. A., and Wang, Y. R., The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry in the trace elements and speciation analysis of traditional chinese medicine. Spectrosc. Spect. Anal. 2002, 22 (6), 1019-1024.
16.Liu, D. L.; Ke, S. Y.; Ye, R., and Ding, M. Y., Determination of trace lead in traditional chinese herbal medicine astragalus by microwave digestion-CTAB enhancing-continual flow ingection hydride generation-ICP-AES. Spectrosc. Spect. Anal. 2007, 27 (11), 2337-2340.
17.Li, M. F.; Liu, Y. X., and Wan, Y. Q., Determination of the trace elements in shengmai san decoction by ICP-AES. Spectrosc. Spect. Anal. 2008, 28 (2), 436-440.
18.Mao, L.; Tan, M. X.; Chen, Z. F., and Liang, H., Determination of metal contents of two chinese medicinal herbs, flemingiae philippinensis and sophora tonkinensis, grown in guangxi by ICP-AES. Spectrosc. Spect. Anal. 2009, 29 (9), 2568-2570.
19.Qin, J. L.; Chen, Z. F.; Liu, Y. C., and Liang, H., Determination of trace metal elements in zanthoxylum nitidum by ICP-AES. Spectrosc. Spect. Anal. 2009, 29 (10), 2851-2854.
20.Tan, M. X.; Chen, Z. F.; Wang, H. S.; Liu, Y. C., and Liang, H., Analysis of macroelements and microelements in chinese traditional medicine plumbago zeylanica linn by ICP-AES. Spectrosc. Spect. Anal. 2009, 29 (4), 1112-1114.
21.May, T. W. and Wiedmeyer, R. H., A table of polyatomic interferences in ICP-MS. Atom. Spectrosc. 1998, 19 (5), 150-155.
22.http://www.shengfoong.com.tw/ISO17025_005.htm.
23.Volynsky, A. B. and de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2005, 60 (11), 1432-1441.
24.黃仕一, “泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於穀物樣品中微量元素之分析應用”, 中山大學碩士論文, 民國 98 年 7月。25.黎伯謙, “泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於米及塑膠樣品中微量元素分析之應用”, 中山大學碩士論文, 民國 92 年 6月。