(3.232.129.123) 您好!臺灣時間:2021/03/06 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張裕享
研究生(外文):Yu-Hsiang Chang
論文名稱:人類陰離子交換蛋白的複雜型突變和完全遠端腎小管酸血症及遺傳性球狀紅血球症相關
論文名稱(外文):Compound mutations in human anion exchanger 1 are associated with complete distal renal tubular acidosis and hereditary spherocytosis
指導教授:呂佩融蕭正夫
指導教授(外文):Pei-Jung LuChen-Fu Shaw
學位類別:博士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:145
中文關鍵詞:人類陰離子交換蛋白遠端腎小管酸血症遺傳性球狀紅血球症
外文關鍵詞:distal renal tubular acidosishereditary spherocytosishuman anion exchanger 1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類陰離子交換蛋白(AE1)的各種突變和遺傳性遠端腎小管酸血症及遺傳性球狀紅血球症有相關,然而考查文獻資料遺傳性球狀紅血球症和遠端腎小管酸血症似乎不會同時存在。本實驗室發現一位病人同時罹患上述兩種疾病。我們懷疑這是因為人類陰離子交換蛋白的突變所致,基因定序結果得知,此病人有一個新的突變(Band 3 Kaohsiung, AE1 E522K)且合併一個AE1 G701D的突變。本研究的目的是探討人類陰離子交換蛋白的各種突變同型體在MDCK和k562細胞中的個別表現及相互結合的複型表現。結果顯示當我們將腎臟同型體WT、E522K、G701D在MDCK細胞中表現以研究相關蛋白質的移行及分佈位置時,發現上述三種腎臟同型體可以作不同方式的結合。個別蛋白質表現時,WT和E522K可到達細胞表面,而G701D則滯留在細胞質內;如果使兩種蛋白質同時表現時,E522K/WT 和 G701D/WT可到達細胞表面,而E522K/G701D則滯留在細胞質內。另一方面,我們將紅血球同型體WT、E522K、G701D在k526細胞中表現以研究相關蛋白質的移行及分佈位置時,發現紅血球同型體WT、E522K、G701D在k562細胞中也可做不同方式之結合,而且紅血球同型體的E522K/G701D在k562細胞表面的量也比WT/WT在細胞表面量有顯著意義的減少,和我們在病患紅血球表面偵測到的AE1只有正常表現量的28% 結果相符。我們的研究顯示人類陰離子交換蛋白的複雜型突變E522K/G701D會造成該蛋白質在腎臟細胞及紅血球的移行缺失,而造成此病人的遠端腎小管酸血症和遺傳性球狀紅血球症。
Missense, nonsense, and frameshift mutations in the human anion exchanger 1 (AE1) have been associated with inherited distal renal tubular acidosis and hereditary spherocytosis. These two disorders are almost always mutually exclusive. However, we have recently found an unusual exception, i.e, a patient with complete distal renal tubular acidosis and severe hereditary spherocytosis. DNA sequencing revealed a novel mutation AE1 E522K (Band 3 Kaohsiung) combined with AE1 G701D mutation in this patient. We hypothesize these AE1 mutations cause these two disorders because of trafficking defect. To elucidate this hypothesis, we analyzed protein trafficking and subcellular location of AE1 and these mutants transfected into MDCK cells. Our results showed that they formed homodimers or heterodimers with each other. Homodimers of the wild-type and E522K mutant were localized at the plasma membrane, whereas the G701D mutant largely remained in the cytoplasm. On the other hand, heterodimers of either E522K or G701D and the wild-type AE1 were located in the plasma membrane, whereas E522K/G701D heterodimers remained in the cytoplasm. As for erythroid isoform of anion exchanger 1, analysis of protein trafficking and subcellular localization of the wild-type erythroid isoform of human anion exchanger 1 and these mutants transfected into k562 cells also showed that they can form homodimers or heterodimers with each other. Erythroid AE1 E522K/G701D cell-surface expression was significantly lower compared with WT homodimer expression. This result coincided with that erythroid AE1 of the patient’s red cell membrane can be detected 28% that of normal control in immunoblotting. Our study shows that the compound E522K/G701D mutation of human anion exchanger 1 causes trafficking defects in kidney and red blood cell lines, and these may explain the complete distal renal tubular acidosis and hereditary spherocytosis of the patient.
Chapter 1. General introduction…………………......l
1.1 Anion exchanger 1..…………................................2
1.2 AE1 and erythroid phenotype……………...........6
1.3 AE1 and renal phenotype………………............11
1.4 Clinical features………………………………....17
1.5 The aim of this investigation..............................19
Chapter 2. E522K/G701D mutations associated with dRTA…..........................................................................21
2.1 Materials and methods………...........................22
2.2 Results……………………...................................30
2.3 Conclusion……………………………................39
Chapter 3. E522K/G701D mutations associated with HS..................................................................................41
3.1 Materials and methods…………………………42
3.2 Results……………………………………….......52
3.3 Conclusion…………………………………….....61
Chapter 4. General discussion….............................62
4.1 The mutants in this patient……..........................63
4.2 Trafficking defects of AE1 E522K/G701D.……65
4.3 Future studies……………………........................66
4.4 General conclusion……………………...............68
References…………………………………………...69
Tables..……………………………………..................76
Figures..………………………………….....................79
Publication list……....................................................109
Compound mutations in human anion exchanger 1 are associated with complete distal renal tubular acidosis and hereditary spherocytosis……………………………………….110
Treatment with Deferiprone for Iron Overload Alleviates Bone Marrow Failure in a Fanconi Anemia Patient…………………...............................................120
Sequential Transplants for Respective Relapse of Hodgkin Disease and Hemophagocytic Lymphohistiocytosis: A Treatment Dilemma……………………………………………126
1. Delaunay J: The molecular basis of hereditary red cell membrane disorders. Blood Rev 2007; 21(1): 1-20.
2. Gallagher PG, Ferriera JD: Molecular basis of erythrocyte membrane disorders. Curr Opin Hematol 1997; 4(2): 128-35.
3. Tanner MJ: Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders. Curr Opin Hematol 2002; 9(2): 133-9.
4. Tse WT, Lux SE: Red blood cell membrane disorders. Br J Haematol 1999; 104(1): 2-13.
5. Palek J, Lux SE: Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias. Semin Hematol 1983; 20(3): 189-224.
6. Gallagher PG, Forget BG: Hematologically important mutations: band 3 and protein 4.2 variants in hereditary spherocytosis. Blood Cells Mol Dis 1997; 23(3): 417-21.
7. Alper SL: Genetic diseases of acid-base transporters. Annu Rev Physiol 2002; 64: 899-923.
8. Alper SL: Molecular physiology of SLC4 anion exchangers. Exp Physiol 2006; 91(1): 153-61.
9. Romero MF: Molecular pathophysiology of SLC4 bicarbonate transporters. Curr Opin Nephrol Hypertens 2005; 14(5): 495-501.
10. Casey JR, Reithmeier RA: Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem 1991; 266(24): 15726-37.
11. Corbett JD, Agre P, Palek J, Golan DE: Differential control of band 3 lateral and rotational mobility in intact red cells. J Clin Invest 1994; 94(2): 683-8.
12. Toye AM, Ghosh S, Young MT, et al.: Protein-4.2 association with band 3 (AE1, SLCA4) in Xenopus oocytes: effects of three natural protein-4.2 mutations associated with hemolytic anemia. Blood 2005; 105(10): 4088-95.
13. Stefanovic M, Markham NO, Parry EM, et al.: An 11-amino acid beta-hairpin loop in the cytoplasmic domain of band 3 is responsible for ankyrin binding in mouse erythrocytes. Proc Natl Acad Sci U S A 2007; 104(35): 13972-7.
14. Salomao M, Zhang X, Yang Y, et al.: Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci U S A 2008; 105(23): 8026-31.
15. De Rosa MC, Carelli Alinovi C, Galtieri A, Scatena R, Giardina B: The plasma membrane of erythrocytes plays a fundamental role in the transport of oxygen, carbon dioxide and nitric oxide and in the maintenance of the reduced state of the heme iron. Gene 2007; 398(1-2): 162-71.
16. Chu H, Low PS: Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3. Biochem J 2006; 400(1): 143-51.
17. Zhang Y, Manning LR, Falcone J, Platt O, Manning JM: Human erythrocyte membrane band 3 protein influences hemoglobin cooperativity. Possible effect on oxygen transport. J Biol Chem 2003; 278(41): 39565-71.
18. Tanner MJ: Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol 1993; 30(1): 34-57.
19. Okubo K, Kang D, Hamasaki N, Jennings ML: Red blood cell band 3. Lysine 539 and lysine 851 react with the same H2DIDS (4,4''-diisothiocyanodihydrostilbene-2,2''-disulfonic acid) molecule. J Biol Chem 1994; 269(3): 1918-26.
20. Shayakul C, Alper SL: Defects in processing and trafficking of the AE1 Cl-/HCO3- exchanger associated with inherited distal renal tubular acidosis. Clin Exp Nephrol 2004; 8(1): 1-11.
21. Vince JW, Reithmeier RA: Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J Biol Chem 1998; 273(43): 28430-7.
22. Sterling D, Reithmeier RA, Casey JR: A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 2001; 276(51): 47886-94.
23. Campanella ME, Chu H, Low PS: Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci U S A 2005; 102(7): 2402-7.
24. Brunati AM, Bordin L, Clari G, et al.: Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood 2000; 96(4): 1550-7.
25. Ruetz S, Lindsey AE, Ward CL, Kopito RR: Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment. J Cell Biol 1993; 121(1): 37-48.
26. Quilty JA, Reithmeier RA: Trafficking and folding defects in hereditary spherocytosis mutants of the human red cell anion exchanger. Traffic 2000; 1(12): 987-98.
27. Alper SL: Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212(Pt 11): 1672-83.
28. Pushkin A, Kurtz I: SLC4 base (HCO3 -, CO3 2-) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 2006; 290(3): F580-99.
29. Landolt-Marticorena C, Charuk JH, Reithmeier RA: Two glycoprotein populations of band 3 dimers are present in human erythrocytes. Mol Membr Biol 1998; 15(3): 153-8.
30. Mohandas N, Gallagher PG: Red cell membrane: past, present, and future. Blood 2008; 112(10): 3939-48.
31. An X, Mohandas N: Disorders of red cell membrane. Br J Haematol 2008; 141(3): 367-75.
32. Shah S, Vega R: Hereditary spherocytosis. Pediatr Rev 2004; 25(5): 168-72.
33. Bolton-Maggs PH, Stevens RF, Dodd NJ, Lamont G, Tittensor P, King MJ: Guidelines for the diagnosis and management of hereditary spherocytosis. Br J Haematol 2004; 126(4): 455-74.
34. Bolton-Maggs PH: Hereditary spherocytosis; new guidelines. Arch Dis Child 2004; 89(9): 809-12.
35. Guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen. Working Party of the British Committee for Standards in Haematology Clinical Haematology Task Force. BMJ 1996; 312(7028): 430-4.
36. Alloisio N, Maillet P, Carre G, et al.: Hereditary spherocytosis with band 3 deficiency. Association with a nonsense mutation of the band 3 gene (allele Lyon), and aggravation by a low-expression allele occurring in trans (allele Genas). Blood 1996; 88(3): 1062-9.
37. Alloisio N, Texier P, Vallier A, et al.: Modulation of clinical expression and band 3 deficiency in hereditary spherocytosis. Blood 1997; 90(1): 414-20.
38. Bracher NA, Lyons CA, Wessels G, Mansvelt E, Coetzer TL: Band 3 Cape Town (E90K) causes severe hereditary spherocytosis in combination with band 3 Prague III. Br J Haematol 2001; 113(3): 689-93.
39. Jarolim P, Murray JL, Rubin HL, et al.: Characterization of 13 novel band 3 gene defects in hereditary spherocytosis with band 3 deficiency. Blood 1996; 88(11): 4366-74.
40. Jarolim P, Rubin HL, Brabec V, et al.: Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis. Blood 1995; 85(3): 634-40.
41. Jarolim P, Rubin HL, Liu SC, et al.: Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest 1994; 93(1): 121-30.
42. Maillet P, Vallier A, Reinhart WH, et al.: Band 3 Chur: a variant associated with band 3-deficient hereditary spherocytosis and substitution in a highly conserved position of transmembrane segment 11. Br J Haematol 1995; 91(4): 804-10.
43. Miraglia del Giudice E, Vallier A, Maillet P, et al.: Novel band 3 variants (bands 3 Foggia, Napoli I and Napoli II) associated with hereditary spherocytosis and band 3 deficiency: status of the D38A polymorphism within the EPB3 locus. Br J Haematol 1997; 96(1): 70-6.
44. Ribeiro ML, Alloisio N, Almeida H, et al.: Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood 2000; 96(4): 1602-4.
45. Rysava R, Tesar V, Jirsa M, Jr., Brabec V, Jarolim P: Incomplete distal renal tubular acidosis coinherited with a mutation in the band 3 (AE1) gene. Nephrol Dial Transplant 1997; 12(9): 1869-73.
46. Toye AM, Williamson RC, Khanfar M, et al.: Band 3 Courcouronnes (Ser667Phe): a trafficking mutant differentially rescued by wild type band 3 and glycophorin A. Blood 2008.
47. Perrotta S, Borriello A, Scaloni A, et al.: The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosphorylation: implications for band 3 function. Blood 2005; 106(13): 4359-66.
48. Jarolim P, Palek J, Amato D, et al.: Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A 1991; 88(24): 11022-6.
49. Schofield AE, Reardon DM, Tanner MJ: Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature 1992; 355(6363): 836-8.
50. Kudrycki KE, Shull GE: Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J Biol Chem 1989; 264(14): 8185-92.
51. Kollert-Jons A, Wagner S, Hubner S, Appelhans H, Drenckhahn D: Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 1993; 265(6 Pt 2): F813-21.
52. Alper SL, Natale J, Gluck S, Lodish HF, Brown D: Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A 1989; 86(14): 5429-33.
53. Karet FE: Inherited distal renal tubular acidosis. J Am Soc Nephrol 2002; 13(8): 2178-84.
54. Laing CM, Toye AM, Capasso G, Unwin RJ: Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol 2005; 37(6): 1151-61.
55. Nicoletta JA, Schwartz GJ: Distal renal tubular acidosis. Curr Opin Pediatr 2004; 16(2): 194-8.
56. Devonald MA, Karet FE: Renal epithelial traffic jams and one-way streets. J Am Soc Nephrol 2004; 15(6): 1370-81.
57. Rodriguez Soriano J: Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 2002; 13(8): 2160-70.
58. Bruce LJ, Cope DL, Jones GK, et al.: Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 1997; 100(7): 1693-707.
59. Bruce LJ, Wrong O, Toye AM, et al.: Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells. Biochem J 2000; 350 Pt 1: 41-51.
60. Choo KE, Nicoli TK, Bruce LJ, Tanner MJ, Ruiz-Linares A, Wrong OM: Recessive distal renal tubular acidosis in Sarawak caused by AE1 mutations. Pediatr Nephrol 2006; 21(2): 212-7.
61. Devonald MA, Smith AN, Poon JP, Ihrke G, Karet FE: Non-polarized targeting of AE1 causes autosomal dominant distal renal tubular acidosis. Nat Genet 2003; 33(2): 125-7.
62. Jarolim P, Shayakul C, Prabakaran D, et al.: Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger. J Biol Chem 1998; 273(11): 6380-8.
63. Karet FE, Gainza FJ, Gyory AZ, et al.: Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A 1998; 95(11): 6337-42.
64. Kittanakom S, Cordat E, Akkarapatumwong V, Yenchitsomanus PT, Reithmeier RA: Trafficking defects of a novel autosomal recessive distal renal tubular acidosis mutant (S773P) of the human kidney anion exchanger (kAE1). J Biol Chem 2004; 279(39): 40960-71.
65. Rungroj N, Devonald MA, Cuthbert AW, et al.: A novel missense mutation in AE1 causing autosomal dominant distal renal tubular acidosis retains normal transport function but is mistargeted in polarized epithelial cells. J Biol Chem 2004; 279(14): 13833-8.
66. Sritippayawan S, Sumboonnanonda A, Vasuvattakul S, et al.: Novel compound heterozygous SLC4A1 mutations in Thai patients with autosomal recessive distal renal tubular acidosis. Am J Kidney Dis 2004; 44(1): 64-70.
67. Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, et al.: Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest 1998; 102(12): 2173-9.
68. Toye AM, Banting G, Tanner MJ: Regions of human kidney anion exchanger 1 (kAE1) required for basolateral targeting of kAE1 in polarised kidney cells: mis-targeting explains dominant renal tubular acidosis (dRTA). J Cell Sci 2004; 117(Pt 8): 1399-410.
69. Toye AM, Bruce LJ, Unwin RJ, Wrong O, Tanner MJ: Band 3 Walton, a C-terminal deletion associated with distal renal tubular acidosis, is expressed in the red cell membrane but retained internally in kidney cells. Blood 2002; 99(1): 342-7.
70. Vasuvattakul S, Yenchitsomanus PT, Vachuanichsanong P, et al.: Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int 1999; 56(5): 1674-82.
71. Yenchitsomanus PT, Vasuvattakul S, Kirdpon S, et al.: Autosomal recessive distal renal tubular acidosis caused by G701D mutation of anion exchanger 1 gene. Am J Kidney Dis 2002; 40(1): 21-9.
72. Quilty JA, Cordat E, Reithmeier RA: Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis. Biochem J 2002; 368(Pt 3): 895-903.
73. Williamson RC, Brown AC, Mawby WJ, Toye AM: Human kidney anion exchanger 1 localisation in MDCK cells is controlled by the phosphorylation status of two critical tyrosines. J Cell Sci 2008; 121(Pt 20): 3422-32.
74. Inaba M, Yawata A, Koshino I, et al.: Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest 1996; 97(8): 1804-17.
75. Peters LL, Shivdasani RA, Liu SC, et al.: Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 1996; 86(6): 917-27.
76. Southgate CD, Chishti AH, Mitchell B, Yi SJ, Palek J: Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Nat Genet 1996; 14(2): 227-30.
77. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA: Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl-/HCO3- exchanger (slc4a1). J Am Soc Nephrol 2007; 18(5): 1408-18.
78. Fairbanks G, Steck TL, Wallach DF: Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 1971; 10(13): 2606-17.
79. Lu PJ, Zhou XZ, Shen M, Lu KP: Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 1999; 283(5406): 1325-8.
80. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP: The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399(6738): 784-8.
81. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP: Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002; 277(4): 2381-4.
82. Chen CH, Lu PJ, Chen YC, et al.: FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway. Oncogene 2007; 26(29): 4272-83.
83. Pastorino L, Sun A, Lu PJ, et al.: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 2006; 440(7083): 528-34.
84. Haas KM, Berndt A, Stiller KJ, Hyckel P, Kosmehl H: A comparative quantitative analysis of laminin-5 in the basement membrane of normal, hyperplastic, and malignant oral mucosa by confocal immunofluorescence imaging. J Histochem Cytochem 2001; 49(10): 1261-8.
85. Cordat E, Kittanakom S, Yenchitsomanus PT, et al.: Dominant and recessive distal renal tubular acidosis mutations of kidney anion exchanger 1 induce distinct trafficking defects in MDCK cells. Traffic 2006; 7(2): 117-28.
86. Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S: Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 2005; 120(2): 223-35.
87. Sawasdee N, Udomchaiprasertkul W, Noisakran S, Rungroj N, Akkarapatumwong V, Yenchitsomanus PT: Trafficking defect of mutant kidney anion exchanger 1 (kAE1) proteins associated with distal renal tubular acidosis and Southeast Asian ovalocytosis. Biochem Biophys Res Commun 2006; 350(3): 723-30.
88. Cordat E, Reithmeier RA: Expression and interaction of two compound heterozygous distal renal tubular acidosis mutants of kidney anion exchanger 1 in epithelial cells. Am J Physiol Renal Physiol 2006; 291(6): F1354-61.
89. van Beest M, Robben JH, Savelkoul PJ, et al.: Polarisation, key to good localisation. Biochim Biophys Acta 2006; 1758(8): 1126-33.
90. Cheung JC, Cordat E, Reithmeier RA: Trafficking defects of the Southeast Asian ovalocytosis deletion mutant of anion exchanger 1 membrane proteins. Biochem J 2005; 392(Pt 3): 425-34.
91. Yerbury JJ, Stewart EM, Wyatt AR, Wilson MR: Quality control of protein folding in extracellular space. EMBO Rep 2005; 6(12): 1131-6.
92. Kopito RR: ER quality control: the cytoplasmic connection. Cell 1997; 88(4): 427-30.
93. Hirano K, Zuber C, Roth J, Ziak M: The proteasome is involved in the degradation of different aquaporin-2 mutants causing nephrogenic diabetes insipidus. Am J Pathol 2003; 163(1): 111-20.
94. Vermeer MH, van Doorn R, Dijkman R, et al.: Novel and highly recurrent chromosomal alterations in Sezary syndrome. Cancer Res 2008; 68(8): 2689-98.
95. Jarvius M, Paulsson J, Weibrecht I, et al.: In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 2007; 6(9): 1500-9.
96. Hassoun H, Hanada T, Lutchman M, et al.: Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene. Blood 1998; 91(6): 2146-51.
97. Pang AJ, Reithmeier RA: Interaction of anion exchanger 1 and glycophorin A in human erythroleukemic K562 cells. Biochem J 2009.
98. Beckmann R, Smythe JS, Anstee DJ, Tanner MJ: Functional cell surface expression of band 3, the human red blood cell anion exchange protein (AE1), in K562 erythroleukemia cells: band 3 enhances the cell surface reactivity of Rh antigens. Blood 1998; 92(11): 4428-38.
99. Chang YH, Shaw CF, Jian SH, Hsieh KH, Chiou YH, Lu PJ: Compound mutations in human anion exchanger 1 are associated with complete distal renal tubular acidosis and hereditary spherocytosis. Kidney Int 2009; 76(7): 774-83.
100. Williamson RC, Toye AM: Glycophorin A: Band 3 aid. Blood Cells Mol Dis 2008; 41(1): 35-43.
101. van Geest M, Lolkema JS: Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 2000; 64(1): 13-33.
102. Jarolim P, Rubin HL, Zhai S, et al.: Band 3 Memphis: a widespread polymorphism with abnormal electrophoretic mobility of erythrocyte band 3 protein caused by substitution AAG----GAG (Lys----Glu) in codon 56. Blood 1992; 80(6): 1592-8.
103. Bruce LJ, Ring SM, Anstee DJ, Reid ME, Wilkinson S, Tanner MJ: Changes in the blood group Wright antigens are associated with a mutation at amino acid 658 in human erythrocyte band 3: a site of interaction between band 3 and glycophorin A under certain conditions. Blood 1995; 85(2): 541-7.
104. Roth J, Yam GH, Fan J, et al.: Protein quality control: the who''s who, the where''s and therapeutic escapes. Histochem Cell Biol 2008; 129(2): 163-77.
105. Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM: Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 2004; 5(11): 821-37.
106. Perlmutter DH: Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res 2002; 52(6): 832-6.
107. Morello JP, Salahpour A, Laperriere A, et al.: Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 2000; 105(7): 887-95.
108. Robben JH, Sze M, Knoers NV, Deen PM: Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2007; 292(1): F253-60.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔