|
1.Thomas WM, Nicoholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ. GB patent application 9125978.8, December 1991; US patent 5460317, October 1995. 2.Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R 2005: 50: 1-78. 3.Ma ZY. Friction stir processing technology: A Review. Metall Mater Trans A 2008:39: 642-58. 4.Berbon PB, Bingel WH, Mishra RS, Bampton CC, Mahoney MW. A tool to homogenize nanocomposite aluminum alloys. Scripta Mate 2001: 44: 61-6. 5.Manisha D, Newkirk JW, Mishra RS. Properties of friction stir-processed Al 1100–NiTi composite. Scripta Mater 2007:56:541-4. 6.Kwon YJ, Saito N, Shigematsu I. Friction stir process as a new manufracturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett 2002: 21:1473-6. 7.Wang Y, Shi XL, Mishra RS, Watson TJ. Friction stir welding devitrified Al-4.0Y-4.0Ni-0.9Co alloy produced by amorphous powders. Scripta Mater 2007: 56: 971-4. 8.Kwon YJ, Saito N, Shigematsu I. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scripta Mater 2003: 49: 785-789. 9.Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Mater 2004: 51:509-14. 10.Ma ZY, Mishra RS, Mahoney MW. Superplastic deformation behaviour of friction stir processed 7075 Al alloy. Acta Mater 2002: 50: 4419-30. 11.Johannes LB, Charit I, Mishra RS ,Verma R. Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum. Mater Sci Eng A 2007:464:351-7. 12.Ma ZY, Sharam SR, Mishra RS. Effect of friction stir processing on the microstructure of cast A351 aluminum. Mater Sci Eng A 2006:433: 269-78. 13.Ma ZY, Sharam SR, Mishra RS. Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum-silicon alloy. Scripta Mater 2006:54: 1623-6. 14.Nakata K, Kim YG, Fujii H,Tsumura T, Komazaki T. Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Mater Sci Eng A 2006: 437: 274-80. 15.Ma ZY, Pilchak AL, Juhas MC, and Williams JC. Scripta Mate 2006: 54: 1623-6. 16.Mishra RS, Ma ZY, Charit I. A novle technique for fabrication of surface composite. Mater Sci Eng A 2003:341:307-310. 17.Hsu CJ, Kao PW, Ho NJ. Ultrafine-grained Al-Al2Cu composites produced in situ by friction stir processing. Scripta Mater 2005, vol. 53, pp. 341-5. 18.Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP. Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater 2006:54: 5241-9. 19.Lee IS, Kao PW, and Ho NJ. Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing. Intermetallics 2008:16:1104-8. 20.Lee CJ, Huang JC, Hsieh PJ. Mg based nano-composites fabricated by friction stir processing. Scripta Mater 2006: 54:1415-20. 21.Lloyd DJ. Particle reinforced aluminum and magnesium matrix composites. Intl Mater Rev 1994:39: 1-23. 22.Martin JW, Doherty RD. Stability of Microstructures in Metallic Systems, Cambridge University Press, 1976, pp. 234-236. 23.Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal mtrix composites. Mater Sci Eng R 2000 : 29 : 49-113. 24.Mei L, Halldearn RD, and Xiao P. Mechanisms of the aluminium-iron oxide thermite reaction. Scripta Mater 1999: 41: 541-8. 25.Yu P, Deng CJ, Ma NG, Yau MY, Ng DH. Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite. Acta Mater 2003:51: 3445-54. 26.Huang ZJ, Hua BY, Zhang JS. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements. Mater Sci Eng 2003: A351:15-22. 27.Das SK, Davis LA. High performance aerospace alloys via rapid solidification processing. Mater Sci Eng 1988: 98:1-12. 28.Clyne TW, Withers PJ. An introduction to metal matrix composites. Cambridge, Cambridge University Press; 1993. 29.Miller WS, Humphreys FJ. Strengthening mechanisms in particulate metal matrix composites. Scripta Met Mater 1991;25:33-38. 30.Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 2003:51:5743-74. 31.Vaidya RU, Chawla KK. Thermal expansion of metal-matrix composites. Compos Sci Technol 1994:50: 13-22. 32.Dunand DC, Davis LA. Reinforced silver chloride as a model material for the study of dislocations in metal matrix composites. Mater Sci Eng A 1991:144:179-188. 33.Arsenault RJ, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng 1986;81:175–87. 34.Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Mater 2006:54:1321-26 35.Srinivasan S, Chen SR, Schwarz RB. Synthesis of Al/Al3Ti two-phases alloy by mechanical alloying. Mater Sci Eng A1992;153:691-695. 36.Cheng YC, Wang SH, Kao PW, Chang CP. Microstructures and mechanical properties of mechanically allyed Al-Al3Ti alloys. Mater Sci Forum 1996;217:1891-1896. 37.Varin RA. Intelmetallic-reinforced light-metal matrix in situ composites. Metall Mater Trans 2002;33A:193-201. 38.Choi Y, Mullins ME, Wijayatilleke K, Lee JK. Fabrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction. Metall Mater Trans 1992;23A:2387-2392. 39.Vyletel GM, Allison JE, Aken DCV. Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite. Metall Mater Trans A 1995;26A:1395-1405. 40.Tong XC, Fang HS. Al-TiC composites in situ processed by ingot metallurgy and rapid solidification technology. Metall Mater Trans A 1998;29A:893-902. 41.Pan J, Li JH, Fukunaka H, Ning XG, Ye HQ, Yao ZK, Yang M. Microstructural study of the interface reaction between titania whiskers and aluminum. Comp Sci Tech 1997;57:319-325. 42.Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci 2001:46:1-184. 43.Bi J, Ma ZY, Wu SJ, Shen HW, Lu YX. Microstructure-property correlation Al4C3 dispersion strengthened Al composites. J Mater Sci Technol. 1993:9:61-64. 44.Ying DY, Zhang DL. Processing of Cu-Al2O3 metal matrix nanocomposite material by using high energy ball milling. Mater Sci Eng A 2000:286: 152–156. 45.Reddy BSB, Das K, Pabi SK, Das S. Mechanical–thermal synthesis of Al–Ce/Al2O3 nanocomposite powders. Mater Sci and Eng A 2007:445–446. 46.Biselli C, Morris DG, Randall N. Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles. Scripta Metall. Mater. 1994:30:1327-1332 47.Daniel BSS, Murthy VSR, Murthy GS. Metal-ceramic composites via in-situ methods. J Mater Sci Technol 1997:68:132-155. 48.Fukunagn H, Wang XG, Aramaki YZ. Preparation of intermetallic compound matrix composites by reaction squeeze casting. J Mat Sci let 1991:10:23-25; 49.Pan J, Li JH, Fukunaka H, Ning XG, Ye HQ, Yao ZK, Yang M. Microstructure study of the interface reaction between titania whisker and aluminum Composites Sci. Technol. 1997:57:319-325. 50.Peng HX, Wang DZ, Geng L, Yao CK, Mao JF, Scripta Mater. Evaluation of the microstructure of in-situ reaction proceed Al3Ti-Al2O3-Al composite. 1997:37:199-204. 51.Gotman I, Koczak MJ, Shtessel E. Fabrication of A1 matrix in situ composites via self-propagating synthesis. Mater Sci Eng A 1994:187:189-199. 52.Ma ZY, Li JH, Luo M, Ning XG, Lu YX, Bi J, Zhang YZ. In-situ formed Al2O3 and TiB2 particulates mixture-reinforced aluminum composite. Scripta Metall Mater 1994:31: 635-639. 53.Kuruvilla AK, Prasad KS, Bhanuprasad VV, Mahajan YR. Microstructure-property correlation in Al/TiB2 (XD) composites. Scripta Metall Mater 1990:24: 873-878. 54.Srivatsan TS, Sudarshant TS, Laverniaj EJ. Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Prog Mater Sci 1995:39:317-409. 55.Wu JM, Li ZZ. Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture. J Alloys Compd 2000:99:9–16. 56.Lee KM, Moon IH. High temperature performance of dispersion-strengthened Al-Ti alloys prepared by mechanical alloying. Mater Sci Eng 1994:85: 165-170. 57.Wang SH, Kao PW. The strengthening effect of Al3Ti in high temperature deformation of Al–Al3Ti composites. Acta Mater 1998:46:2675-2682. 58.Colligan K. Material flow behavior during friction stir welding of aluminum. Weld J 1999;78:229S-237S. 59.Seidel TU, Reynolds AP. Visualization of material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 2001; 32A:2879-2884. 60.Arbegast WJ. In: Jin Z et al., editors. Hot Deformation of Aluminum Alloys III. Warrendale, PA: TMS;2003. p.313-327. 61.Heurtier P, Desrayaud C, Montheillet F. A thermomechanical analysis of the friction stir welding process. Mater Sci Forum 2002;396-402:1537-1542. 62.Su JQ, Nelson TW, Mishra R, Mahoney M. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 2003:51:713-729. 63.Lee WB, Yeon YM, Jung SB. Joint properties of friction stir welded AZ31B–H24 magnesium alloy. Mater Sci Technol 2003:19:785-790. 64.Prado RA, Murr LE, Shindo DJ, Soto KF. Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: a preliminary study. Scripta Mater 2001:45:75–80. 65.Arbegast WJ. Friction Stir Welding After a Decade of Development. Weld J 2006:85:38-45. 66.Colligan KJ, Fisher JJ, Gover JE, Pickens JR. Friction stir welding in the AAAV. Adv Mater Processes 2002:160:39-41. 67.Campbell G, Stotler T. Friction stir welding of armor grade aluminum plate. Weld J 1999:78:45-47. 68.Seidel TU, Reynolds AP. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 2001:32:2879-2884. 69.Sato YS, Kokawa H, Ikeda K, Enomoto M, Jogan S, Hashimoto T. Microtexture in the friction-stir weld of an aluminum alloy. Metall Mater Trans A 2001: 32:941-48. 70.Park SHC, Sato YS, Kokawa H. Basal plane texture and flow pattern in friction stir weld of a magnesium alloy. Metall Mater Trans A 2003:34:987-994. 71.Field DP, Nelson TW, Hovanski Y, Jata KV. Heterogeneity of crystallographic texture in Friction Stir Welds of Aluminum. Metall Mater Trans A 2001:32:2869-2677. 72.Mahoney MW, Rhodes CG, Flintoff JG, Bingel WH, Spurling R A. Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A 1998:29:1955-1964. 73.Li Y, Murr LE, McClure JC. Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum. Mater Sci Eng A 1999:271:213-223. 74.Liu G, Murr LE, Niou CS, McClure JC, Vega FR. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripts Mater 1997:37:355-361. 75.Sato YS, Kokawa H, Enmoto M, Jogan S. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A 1999:30 :2429-2437. 76.Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC. Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Mater. 1997:36:69-75. 77.Rhodes CG, Mahoney MW, Bingel WH, Calabres M. Fine-grain evolution in friction-stir processed 7050 aluminum. Scripta Mater 2003:48: 1451–55. 78.Su JQ, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater 2005:52:135–40. 79.Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater 2000;42:163-168. 80.Hu CM, Lai CM, Du XH, Ho NJ, Huang JC. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process. Scripta Mater 2008:59:1163-1166. 81.Hu CM, Lai CM, Kao PW, Ho NJ, Huang JC. Solute-enhanced tensile ductility of ultrafine-grained Al–Zn alloy fabricated by friction stir processing. Scripta Mater 2009:60:639-642. 82.Hsu CJ, Kao PW, Ho NJ. Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing. Mater Let 2007:61:1315–1318. 83.Chuang CH, Huang JC, Hsieh P.J. Using friction stir processing to fabricate MgAlZn intermetallic alloys. Scripta Mater 2005:53:1455–60. 84.Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia 2004:51:509–514. 85.Gerlich A., Yamamoto M, North TH. Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds. Metall Mater Trans A 2007:38:1291-1302. 86.Gale WF, Totemeier TC. Smithells Metals Reference Book, 8th ed., Elsevier, 2004. 87.Borzone G, Cacciamani G, Ferro R. Heat of formation of aluminum-cerium intermetallic compounds. Metall Trans A 1991: 22: 2119-2123. 88.Fargeot D, Mercurio D, Dauger A. Structural characterization of alumina metastable phases in plasma sprayed deposits. Mater Chem Phys 1990:24:299-314. 89.Wang YG, Bronsveld PM, DeHosson JM. Ordering of octahedral vacancies in transition aluminas. J Am Ceram Soc 1998: 81:1655-1660. 90.Spigarelli S, Cerri E, Cavaliere P, Evagelista E. An analysis of hot formability of the 6061+20% Al2O3 composite by means of different stability criteria. Mater Sci Eng A 2002:327:144–154. 91.Tanner LE. Diffraction contrast from elastic shear strains due to coherent phases. Phil Mag 1966:14:111-130. 92.Billingham J, Bell PS, Lewis MH. Vacancy short-range order in substoichiometric Transition metal carbides and nitrides with the NaCl structure. I.electron diffraction studies of short-range ordered compounds. Acta Cryst A 1972:28:602-606. 93.Sauvage M, Parthe E. Vacancy short-range order in substoichiometric Transition metal carbides and nitrides with the NaCl structure. II. Numerical calculation of vacancy arrangement. Acta Cryst A 1972:28:607-616. 94.Dauger A, Fargeot D. T.E.M. study of Al2O3 metastble phases. Radiation Effects 1983:74:279-289. 95.Rooksby HP, Rooymans JM. The formation and structure of delta alumina. Clay Min Bull 1961:4:234-238. 96.Levin I, Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 1998:81:1995-2012. 97.Cordfunke EHP, Korning RJM. The enthalpies of formation lanthanide compounds III. Ln2O3 (cr). Thermochimica 2001:375:65-79. 98.Peel M, Steuwer A, Preuss M, Withers PJ. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 2003:51:4791-801. 99.Yu CY, Kao PW, Chang CP. Transition of tensile deformation behaviors in ultrafine-grained aluminum Acta Mater 2005, vol. 53, pp. 4019-28. 100.Martin JW. Micromechanisms in Particle Hardened Alloys. Cambridge University Press, 1980, pp. 60-64.
|