(3.237.97.64) 您好!臺灣時間:2021/03/03 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉純足
研究生(外文):Chun-Zu Liu
論文名稱:低碳鋼於物理性磁能及循環水流作用下形成碳酸鈣及氧化鐵垢層的微觀組織與機制
論文名稱(外文):Microstructure and formation mechanism of the calcium carbonate/iron oxide scale on low carbon steel upon magnetic water treatment
指導教授:沈博彥沈博彥引用關係
指導教授(外文):Pouyan Shen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:138
中文關鍵詞:磁力淨水處理超晶格碳酸鈣奈米顆粒
外文關鍵詞:magnetic water treatmentsuperstructureTEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究是關於碳鋼管和碳鋼平板試片經過磁力淨水處理(magnetic water treatment 簡稱MWT)所得碳酸鈣與氧化鐵垢層粉末結晶之微觀結構形態與光譜分析。MWT之原始水溶液為400 ppm CaCl2,每天添加50 ppm NaHCO3,持續操作一個月,酸鹼值變化在七與八之間,而碳鋼管中心之磁場強度為400 G,磁場作用時間為0.1 s/cycle,循環流速為0.5 m/s。此垢層粉末經由x-光繞射儀(XRD),電子顯微鏡和振動光譜分析,在鈉離子、氯離子、氫氧根離子和磁流動(magnetohydrodynamic)力影響下,硬質結晶方解石(calcite)、軟質結晶霰石(aragonite)和磁鐵礦(magnetite)晶粒大小和形狀。方解石為奈米顆粒具有聚片雙晶,同時依特定{11-20}或{10-1 4}晶面聚簇成長成優選取向,此外有平行於(0-114)晶面之三倍週期之一維整齊超晶格(1-D commensurate superstructure);霰石則偶爾形成菱面體假形,主要形成具有發達(01-1)晶面的長條狀,依[100]方向延伸幾微米長,而且有三倍於(01-1)晶面週期之一維整齊超晶格;而磁鐵礦是以(011)與(100)晶面為主,(111)晶面為輔的次微米級顆粒所組成,且可形成雙晶。由拉曼與紅外光譜分析凝聚物之離子配位情況,得知方解石、霰石和磁鐵礦晶格有明顯吸附OH-基,而其各自之特徵峰波數與天然礦物略有偏差,應該是動態磁力淨水處理誘發晶格之缺陷與局部錯位與失序所造成。動態磁力淨水處理製程使方解石、霰石和磁鐵礦晶粒拋錨沉積成具有平面缺陷結晶垢層,且為陰陽離子共存晶面。洛倫茲力(Lorentz force)和預先凝結綜合效應影響下,方解石依特定(hkil)晶面聚簇,霰石依板條狀快速成長,形成較大粒徑而易被水沖刷去除。
摘要 I
目錄 III
圖目錄 V
附錄目錄 IX
補充資料目錄 XI

第一章 概論 1
第二章 實驗方式 4
2-1 樣本製作及實驗步驟 4
2-1-1 樣本製作 4
2-1-2 實驗步驟(如附錄1c) 6
2-2 量測設備簡介 6
2-2-1 慢速切割機 6
2-2-2 x-光繞射儀(X-ray diffraction, XRD) 6
2-2-3 偏光顯微鏡(Polarized Optical Microscope, POM) 7
2-2-4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 7
2-2-5 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)……………….. 7
2-2-6 微光致螢光/拉曼光譜儀(MicroRaman/PL+cold Stage) 8
2-2-7 霍氏轉換紅外光譜儀(Fourier-Transform Infrared Spectrometer) 9
第三章 實驗結果 11
3-1 X-光繞射儀(XRD)、光學顯微鏡和掃描式電子顯微鏡(SEM).11
3-2 穿透式電子顯微鏡(TEM) 13
3-2-1 低碳鋼管壁上之垢層粉末 13
3-2-2 低碳鋼平板試片上之垢層粉末 13
3-3 振動光譜 15
第四章 實驗討論 17
4-1 方解石沿優選取向成核並且依照特定{HKIL}晶面聚簇成長 17
4-2 霰石之成長晶癖面 20
4-3 磁鐵礦立方八面體和(011)晶面之成核與生長 22
4-4 工業磁能防垢應用與相關自然現象 23
第五章 結論 26
參考文獻 28
[1]Adler, H.H., Kerr, P.F. Infrared study of aragonite and calcite, Am. Mineral. 47 (1962) 700-717.
[2]Albright, J.N.,Vaterite stability, Am. Mineral. 56 (1971) 620-624.
[3]Bragg, W.L.; Claringbull, G.F. The crystalline state – Vol. IV Crystal structures of minerals, Cornell University Press, 1965, p. 129-134.
[4]Busch, K.W., Busch, M.A., Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction, Desalination 109 (1997) 131-148.
[5]Checa, A.G., Jiménez-López, C., Rodríguez-Navarro, A., Machado, J.P., Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters. Marine Biology 150 (2007) 819-827.
[6]Chen, J., Shen, P., On the rotation of nonepitaxy Ni1−xO particles within zirconia grain, Scr. Mater. 37 (1997) 1287-1294.
[7]Coetzee, P.P., Yacoby, M., Howell, S., The role of zinc in magnetic and other physical water treatment methods for the prevention of scale, Water, SA, 22 (1996) 319-326.
[8]Coetzee, P.P., Yacoby, M., Howell, S., Mubenga, S., Scale reduction and scale modification effects induced by Zn and other metal species in physical water treatment, Water, SA, 24 (1998) 77-84.
[9]Coey, J.M.D., Cass, S., Magnetic water treatment, J. Magn. Magn. Mater. 209 (2000) 71-74.
[10]Dalas, E., Koutsoukos, P.G., The effect of magnetic fields on calcium carbonate scale formation, J. Cryst. Growth 96 (1989) 802-806.
[11]Davis, B.L., Adams, L.H. Kinetics of the calcite ⇌ aragonite transformation, J. Geophy. Res. 70 (1965) 433-441.
[12]Deer, W.A., Howie, R.A. and Zussman, J. An introduction to the rock-forming minerals, Longman Scientific & Technology, Essex, UK, see p. 623.
[13]Dobrevski, I., Boneva, M., Bonev, B., Russ. Semi-industrial experiments evaluating the effect of the magnetic treatment of cooling water in decreasing deposit formation, J. Appl. Chem. 66 (1993) 422-425.
[14]Geissbuhler, P., Fenter, P., DiMasi, E., Srajer, G., Sorensen, L.B., Sturchio, C.N. Three-dimensional structure of the calcite-water interface by surface X-ray scattering. Surf. Sci. 573 (2004) 191-203.
[15]Givargizov, E.I., Oriented Crystallization on Amorphous Substrates; Plenum: New York, 1991.
[16]Hartman, P. and Perdock, W.G., On the relations between structure and morphology of crystals I, Acta Crystall. 8 (1955a) 49-52.
[17]Hartman, P. and Perdock, W.G., On the relations between structure and morphology of crystals III, Acta Crystall. 8 (1955b) 525-529 and literature cited herein.
[18]Herzog, R.E., Shi, Q., Patil, J.N., Katz, J.L., Magnetic water treatment : the effect of iron on calcium carbonate nucleation and growth, Langmuir 5 (1989) 861-867.
[19]Higashitani, K., Okamura, K., Hatade, S., Effects of magnetic fields on stability of nonmagnetic ultrafine colloidal particles, J. Coll. Int. Sci. 152 (1992) 125-131.
[20]Higashitani, K., Kage, A., Katamura, S., Hatade, S., Effects of a magnetic field on the formation of CaCO3 particles, J. Coll. Int. Sci. 156 (1993) 90-95.
[21]Hwang, S., Blanco, M., Goddard, W.A., Atomistic simulations of corrosion inhibitors adsorbed on calcite surfaces I. Force field parameters for calcite, J. Phys. Chem. B 105 (2001) 10746-10752.
[22]Kern, R. A. Masson, J.J. Métois, Migration brownienne de cristallites sur une surface et relation avec l''épitaxie: II. Partie théorique, Surf. Sci. 27 (1971) 483-498.
[23]Kitano, Y., The behavior of various inorganic ions in the separation of calcium carbonate from a bicarbonate solution, Bulletin Chem. Soc. Japan, 35 (1962) 1973-1980.
[24]Kobe, S., Dražić, G., McGuiness, P.J., Stražišar, J., The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device, J. Magn. Magn.Mater. 236 (2001) 71-76.
[25]Krylov, O.T., Vikulova, I.K., Eletskii, V.V., Rozno, N.A., Klassen, V.I., Influence of magnetic treatment on the electrokinetic potential of a suspension of CaCO3, UDC541.182.65:537.6. Plenum, New York, 1986.
[26]Krylov, O.T., Rozno, N.A., Funberg, E.I., Klassen, V.I., Mechanism of magnetic Treatment of Natural Waters, Elektron. Obrabotka Mater. 2 (1987) 53-56. [UDC621.332.43:622.693.4]
[27]Kuo, L.Y., Shen, P., On the rotation of non-epitaxy crystallites on single crystal substrate, Surf. Sci. 373 (1997) L350-L356.
[28]Liese, H.C., An infrared absorption analysis of magnetite, Am. Mineral. 52 (1967) 1198-1205.
[29]Lin, C.C.; Liu, L.G., Post-aragonite phase transitions in strontianite and cerussite – A high-pressure Raman spectroscopic study, J. Phys. Chem. Solids 58 (1997) 977-987.
[30]Lin, C.H., Huang, C.N., Chen, S.Y., Zheng, Y., Shen, P., On the enhanced solute content, shape, defect microstructures and optical properties of Ti-doped γ-Al2O3 nanocondensates, J. Phys. Chem. C 113 (2009) 19112-19118.
[31]Lipus, L.C., Krope, J., Crepinsek, L., Dispersion destabilization in magnetic water treatment, J. Colloid Interface Sci. 236 (2001) 60-66.
[32]Masson, A., Métois, J.J., Kern, R., Migration brownienne de cristallites sur une surface et relation avec l''épitaxie: I. Partie expérimentale, Surf. Sci. 27 (1971) 463-482.
[33]Métois, J.J., Gauch, M., Masson, A., Kern, R., Migration brownienne de cristallites sur une surface et relation avec l''épitaxie: III. Cas de l''aluminium sur kcl; Précisions sur le mécanisme de glissement, Surf. Sci. 30 (1972) 43-52.
[34]Métois, J.J., Migration brownienne de cristallites sur une surface et relation avec l''épitaxie: IV. Mobilité de cristallites sur une surface: Décoration de gradins monoatomiques de surface, Surf. Sci. 36 (1973) 269-280.
[35]Ottonello, G. Principles of Geochemistry, Columbia University Press, New York, 1997, p. 557.
[36]Paquette, J., Reeder, R.J., Relationship between surface structure, growth mechanism, and trace element incorporation in calcite, Geochim. et Cosmochim. Acta, 59 (1995) 735-749.
[37]Penn, R.L., Banfield, J.F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281 (1998) 969-971.
[38]Penn, R.L., Banfield, J.F., Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2, Am. Mineral. 83 (1998) 1077-1082.
[39]Penn, R.L., Banfield, J.F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania, Geochimica et Cosmochim. Acta 63 (1999) 1549-1557.
[40]Perry IV, T.D., Cygan, R.T., Mitchell, R., Molecular models of a hydrated calcite mineral surface, Geochim. et Cosmochim. Acta 71 (2007) 5876-5887.
[41]Porter, S. M., Seawater chemistry and early carbonate biomineralization. Science 316 (2007) 1302-1302.
[42]Pouget, E.M., Bomans, P.H.H., Goos, J.A.C.M., Frederik, P.M., de With, G., Sommerdijk, N.A.J.M., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM, Science, 323 (2009) 1455-1458.
[43]Putnis, A., Introduction to Mineral Sciences, Cambridge University Press, 1992, p. 35 and p. 388-390.
[44]Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Muñoz, M.T., Rodriguez-Gallego, M., Baterially mediated mineralization of vaterite, Geochim. et Cosmochim. Acta 71 (2007) 1197-1213.
[45]Shebanova, O.N., Lazor, P., Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424-430.
[46]Shen, P., Hwang, S.L., Chu, H.T, Jeng, R.C., STEM study of “ferritchromit” from the Heng-Chun chromite, Am. Mineral. 73 (1988) 383-388.
[47]Simpson, L.J., Electrochemically generated CaCO3 deposits on iron studied with FTIR and Raman spectroscopy, Electrochimica Acta 43 (1998) 2543-2547.
[48]Spagnoli, D., Gilbert, B., Waychunas, G.A., Banfield, J.F., Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles, Geochim. Cosmochim. Acta 73 (2009) 4023-4033.
[49]Spagnoli, D., Kerisit, S. and Parker, S.C. Atomistic simulations of the free energies of dissolution of ions from flat and stepped calcite surfaces, Journal of Crystal Growth, 294: 103-110, 2006.
[50]Sunagawa, I., Growth and morphology of diamond crystals under stable and metastable conditions, J. Crystal Growth 99 (1990) 1156-1161.
[51]Sugawara, A., Kato, T., Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices, Chem. Comm. 6 (2000) 487-488.
[52]Svoboda, J., A theoretical approach to the magnetic flocculation of weakly magnetic minerals, Int. J. Miner. Process 8 (1981) 377-390.
[53]Svoboda, J., Magnetic flocculation in secondary minimum, J. Colloid Interface Sci. 94 (1983) 37-44.
[54]Takita, Y., Eto, M., Sugihara, H., Nagaoka, K., Promotion mechanism of co-existing NaCl in the synthesis of CaCO3, Materials Letters, 61 (2007) 3083-3085.
[55]Tsai, M.J., Shen, P., Oxidation of aluminized coatings on René 80, a transmission electron microscopy study, Mater. Sci. Eng. 83 (1986) 135-144.
[56]Turner, F.J. Rotation of the crystal lattice in kink bands, deformation bands and twin lamellae of strained crystals, Geology 48 (1962) 955-963.
[57]Urmos, J., Sharma, S.K., Mackenzie, F.T., Characterization of some biogenic carbonates with Raman spectroscopy, Am. Mineral. 76 (1991) 641-646.
[58]Vermeiren, T., Magnetic treatment of liquids for scale and corrosion prevention, Corrosion Technol. 5 (1958) 215-219.
[59]Wada, N., Yamashita, K., Umegaki, T., Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions, J. Colloid Interface Sci. 212 (1999) 357-364 and literature cited herein.
[60]Zhang, L., Tian, C., Waychunas, G.A., Shen, Y.E., Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency spectroscopy. J. Am. Chem. Soc. 130 (2008) 7686-7694.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔