(3.238.36.32) 您好!臺灣時間:2021/02/27 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾政勳
研究生(外文):Cheng-hsun Chung
論文名稱:高功率白光發光二極體之玻璃螢光體製作及可靠度研究
論文名稱(外文):The Study of Ce:YAG Doped Glass Fabrication and Reliability Tests in High-Power White Light-Emitting-Diodes
指導教授:鄭木海
指導教授(外文):Wood-Hi Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:100
中文關鍵詞:高功率可靠度玻璃螢光體白光發光二極體
外文關鍵詞:white-lighthigh-powerLEDglass phosphorreliability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:491
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用玻璃轉換溫度 (Tg) 較高的玻璃材料取代傳統矽膠作為白光調和螢光粉的色轉換層基材,稱為玻璃螢光體。玻璃Tg為750℃,矽膠Tg為150℃,兩者相差五倍。因此玻璃螢光體同時保有玻璃的特性以及螢光粉的發光能力,對溫度的穩定性良好以及對濕度的阻絕性佳。因此在高溫老化、冷熱衝擊與高溫高濕可靠度測試結果,玻璃螢光體較傳統的螢光膠在流明損耗與色飄移特性有較低變化的表現。
在三種可靠度實驗結果中,高溫老化測試對流明變化有較大影響。使用對熱穩定性高的玻璃作為摻雜的基材,可降低基材因穿透度的下降造成流明損失的情形。與螢光膠相較,摻雜濃度2~8 wt% 的玻璃螢光體在高溫老化造成的流明損耗上有22~30% 的改善。而高溫高濕測試對色飄移變化有較大影響,在濕度的影響下,螢光粉本身的衰減會造成老化前後色飄移情形。但使用對濕度阻絕性佳的玻璃作為摻雜的基材,可減少螢光粉因為受到濕度影響,發光能力下降造成光譜峰值下降的情形。與螢光膠相較,摻雜2~8 wt% 的玻璃螢光體在高溫高濕造成的色飄移上有49~65% 的改善。惟冷熱衝擊測試對玻璃螢光體與傳統螢光膠皆無明顯差別。玻璃螢光體使用高玻璃轉換溫度的玻璃材料作為摻雜螢光粉的基材,其特性較傳統螢光膠皆有較優良的可靠度表現,本論文研究結果可作為往後玻璃應用在高功率LED封裝上的指標。
High thermal stability and humidity resistance of phosphor-converted white-light-emitting diodes (PC-WLEDs) using Ce:YAG doped glass, instead of conventional Ce:YAG doped silicone, as a phosphor-converted layer is proposed and fabricated. The glass has five times higher glass transition temperature (Tg) of 750℃ compare with silicone of 150℃, that could exhibited better performance than silicone, including lumen loss, chromaticity shift, transmittance loss, and peak emission intensity undergoing three industry-standard reliability tests at either high (8wt%) or low (2wt%) doping concentrations of Ce:YAG. The proposed glass phosphor possesses host stability as glass and retains desired fluorescence as Ce:YAG.
In thermal aging, thermal shock, and damp heat reliability results, the thermal aging has the largest degradation of lumen loss, but the results showed better thermal stability that the glass phosphor with 22~30% lumen loss improvement for 2~8 wt% Ce:YAG doping than silicone phosphor. The damp heat test has the largest degradation of chromaticity shift, but the results showed excellent humidity resistance that the glass phosphor with highest 49~65% chromaticity shift improvement for 2~8 wt% Ce:YAG doping than silicone phosphor. But under thermal shock test, there isn’t a large difference between glass and silicone phosphor. In this study, we demonstrate the feasibility of adapting glass as a phosphor-converted layer in PC-WLED module that can potentially provide higher reliability and better performance for high-power LEDs, particularly in the area where strict reliability is highly required and in the environment where silicone does not stand for long.
中文摘要 I
英文摘要 II
誌 謝 III
內容目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒 論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目標與章節介紹 7
參考資料 10
第二章 LED構造及基本原理 11
2.1 LED 晶片發光原理 12
2.2 白光發光原理 16
2.3 色彩學 17
2.4 LED構造介紹及發展 26
2.5 螢光粉塗佈技術介紹 29
參考資料 33
第三章 可靠度規範及儀器 35
3.1 可靠度測試規格 35
3.2 可靠度測試儀器 42
3.2.1 高溫老化測試儀器 42
3.2.2 冷熱衝擊測試儀器 43
3.2.3 高溫高濕測試儀器 44
3.2.4 熱微分掃描卡量計 45
參考資料 48
第四章 玻璃螢光體製作技術與可靠度研究 50
4.1 實驗方法與架構 51
4.2 玻璃螢光體燒結技術與材料特性 57
4.2.1 玻璃粉末與螢光粉末性質 57
4.2.2 玻璃螢光體燒結技術 59
4.3 螢光膠與玻璃螢光體可靠度之量測與結果 67
4.3.1 高溫老化測試 68
4.3.2 冷熱衝擊測試 71
4.3.3 高溫高濕測試 74
4.4 可靠度實驗結果與衰減機制討論 77
參考資料 82
第五章 結論 83
參考資料 86
[1] S. Nakamura and S. F. Chichibu, “Introduction to nitride semiconductor blue laser diodes and light emitting diodes”, London, UK: Taylor and Francis, 2000.
[2] P. Maaskant, M. Akhter, J. Lambkin, and L. Considine, “Failure mechanisms associated with the fabrication of InGaN-based LEDs”, IEEE Transactions on Electron Devices, vol. 48, No. 8, pp.1822-1825, 2001.
[3] E. F. Schubert, “Light-emitting diodes”, New York, Cambridge, chap. 11, 2006.
[4] Y. Lin, D.S. Wuu, K.F. Pan, S.H. Huang, C.E. Lee, W.K. Wang, S.C. Hsu, Y.Y. Su, S.Y. Huang, and R.H. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques”, IEEE Photo. Technol. Lett. vol. 17, no. 9, pp. 1809-1811, 2005.
[5] H. Luo, J.K. Kim, E.F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes”, Appl. Phys. Lett, vol. 86, pp. 24350-1-3, 2005.
[6] M. Fukuda,”Optical semiconductor device,” John Wiley and Sons, New York, 1999
[7] 郭浩中, LED原理與應用, 五南圖書出版公司, 2009
[8] PHILIPS LUMILEDS, www.philipslumileds.com.
[9] Heliopto, http://www.heliopto.com/
[10] S. Nakamura and S. F. Chichibu, “Introduction to nitride semiconductor blue laser diodes and light emitting diodes”, London, UK: Taylor and Francis, 2000.
[11] P. Maaskant, M. Akhter, J. Lambkin, and L. Considine, “Failure mechanisms associated with the fabrication of InGaN-based LEDs”, IEEE Transactions on Electron Devices, vol. 48, No. 8, pp.1822-1825, 2001.
[12] M. Fukuda, “Optical semiconductor device,” John Wiley and Sons, New York, 1999.
[13] 許招墉譯, 最新圖解半導體製程槪論, 東芝セミコンダクタ-社普林斯頓國際有限公司, 2004.
[14] 林螢光編, 光電子學-原理、元件與應用, 全華圖書股份有限公司, 2000.
[15] 蔡國猷, 發光二極體基礎技術, 建興出版社, 1992.
[16] S. Muthu, F. J. P. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for White Light illumination”, IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, pp. 333-338, 2002.
[17] C. M. Chang, Y. C. Fang and C. R. Lee, “A new design mixing R.G.B. LED (Red, Green, Blue Light Emitting Diode) for a modern LCD (Liquid Crystal Display) backlight system”, Proceedings of SPIE, vol. 6338, pp. 63380Q-1~11, 2006.
[18] T. Nishida, T. Ban and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors”, Applied Physics Letters, vol. 82, pp. 3817-3819, 2003.
[19] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart”, Science, vol. 308, pp. 1274-1278, 2005.
[201] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes”, Appl. Phys. A, vol. 64, pp. 417-418, 1997.
[21] 原著:大田登,編譯:陳鴻興,陳詩涵, 色彩工程學:理論與應用, 全華圖書股份有限公司, 2008.
[22] 郝允祥、陳遐舉 與 張保州, 光度學, 北京師範大學出版社, 北京, 1988.
[23] H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons”, Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 220, pp. 115-130, 1983.
[24] 羅俊仁, 固態照明與白光發光二極體, 行政院國科會光電小組編, 2004.
[25] 劉如熹, 劉宇恒, 發光二極體用氧氮螢光粉介紹, 全華科技股份有限公司, 2006.
[26] C. C. Tsai, C. C. Huang, J. Wang, M. C. Hsuh, and W. H. Cheng, “An optimum design and fabrication of focus lens for high intensity Light-Emitting Diodes”, Jpn. J. Appl. Phys, vol. 48, no. 094504, Oct. 2009.
[27] 楊淑慧, LED產業新版圖, 財訊出版社, 2006.
[28] Kim J. K., Luo H., Schubert E. F., Cho J., Sone C., and Park Y., “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup” , Jpn. J. Appl. Phys. – Express Lett. 44, L 649 (2005)
[29] Luo H., Kim J. K., Schubert E. F., Cho J., Sone C., and Park Y., “Analysis of High-Power Packages for Phosphor-Based White Llight-Emitting Diodes” , Appl. Phys. Lett. 86, 243505 (2005).Narendran et al., Phys. Stet. Sol. (a)202, R60 (2005)
[30] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency”, Phys.Stat. sol (a). 202, No. 6, R60, 2005.
[31] 鄭景太, 高功率LED封裝技術的發展現況, 工業材料雜誌 266 期
[32] 許鎮鵬, 高功率LED 封裝技術簡介, 工業技術研究院
[33] Boulanger, M. and Escobar, “Experimental design for a class of accelerated degradation tests”, Technometrics, vol. 36, no.3, pp. 260-272, 1994.
[34] M. B. Carey and, R. H. Koenig, “Reliability assessment based on accelerated degradation: A case study”, IEEE Transactions on Reliability, vol. 40, no.5, pp. 499-506, 1991.
[35] D. S. Chang, “Analysis of accelerated degradation data in a Two-way design”, Reliability Engineering and System Safety, vol. 39, pp. 65-69, 1993.
[36] C. H. Chiao, and M. Hamada, “Robust reliabilitv for light emitting using degradation measurements”, Quality and Reliability Engineering International, vol. 12, pp. 89-94, 1996.
[37] Y. Dai, “An application of an artificial neural network to reliability screen classification from noise measurement”, Microelectronics and Reliability, vol. 33, pp. 451-453, 1993.
[38] G. J. Hann, and W. Nelson, “Comparison of methods for analyzing censored life data to estimate relationships between stress and product life”, IEEE Transactions on Reliability, vol. 23, pp. 2-11, 1974.
[39] G. Iuculano, and A. Zanini, “Evaluation of failure models through step-stress tests”, IEEE Transactions on Reliability, vol. R-35, no. 4, pp. 409-413, 1986.
[40] L. F. Lawless, “Statistical methods in reliability”, Technometrics, vol. 25, pp. 305-315, 1983.
[41] M. C. Liu, W. Kuo, and T. Sastri, “An exploratory study of a neural network approach for reliability data analysis”, Quality and Reliability Engineering International, vol. 11, pp. 107-112, 1995.
[42] C. J. Lu, and W. Q. Meeker, “Using degradation measures to estimate a time-To-failure distribution” , Technometrics, vol. 35, no.2, pp. 161-174, 1993.
[43] M. J. LuValle, “A note on experiment design for accelerated life tests”, Microelectronics and Reliability. vol. 30, pp. 591-603, 1990.
[44] W. Q. Meeker, “Planning life tests in which units are inspected for failure”, IEEE Transactions on Reliability. vol. 35, pp. 571-578, 1986.
[45] W. Q. Meeker, and L. A. Escobar, “A review of reserch and current issues in accelerated testing”, International Statistical Review, vol. 61, pp. 147-168, 1993.
[46] Nelson, W. Applied Life Data Analysis, New York: John Wiley. (1982)
[47] Nelson, W. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, New York: John Wiley. (1990)
[48] 蔡俊欽, “高功率發光二極體模組光功率與光場高溫老化可靠度之研究,” 碩士畢業論文, 國立中山大學, 2009.
[49] LED照明標準及品質研發聯盟, LED模組光學與電性量測標準草案, 台灣半導體產業協會, 2008.
[50] LED照明標準及品質研發聯盟, LED元件與模組一般壽命試驗標準草案, 台灣半導體產業協會, 2008.
[51] U.S. Government Accountability Office, Military Handbooks and Standards Related to Reliability, www.gao.gov.
[52] CREE, CREE XLamp XR Family &4550 LED Reliability, www.cree.com/xlamp.
[53] PHILIPS LUMILEDS, Reliability Datasheet RD25, www.philipslumileds.com.
[54] NETZSCH, http://www.ngb-netzsch.com.cn/products/dsc/photo-dsc.html.
[55] AST, http://www.astcorp.com.tw/home.htm
[56] Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis”, Materials Research Bulletin, vol. 35, pp. 789-798, 2000.
[57] Sih-Etsu chemical, KE-2500/KER-260, http://www.silicone.jp/, 2006.
[58] Y. Masayuki and A. Yoshiyuki, Glass for Photonics, (ISBN 0-521-58053-6), United Kingdom: Cambridge University, 2000
[59] U.S. Government Accountability Office, Military Handbooks and Standards Related to Reliability, www.gao.gov.
[60] CREE, CREE XLamp XR Family &4550 LED Reliability, www.cree.com/xlamp.
[61] PHILIPS LUMILEDS, Reliability Datasheet RD25,www.philipslumileds.com.
[62] 陳遠帆, “(YXYb1-x)3Al5O12晶體的生長與物理性質研究,” 博士畢業論文, 國立中山大學, 2003.
[63] 石景仁, “白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析,” 碩士畢業論文, 國立台灣大學, 2001.
[64] J. K. Gillham, G. Wisanrakkit, J. B. Enns, “The glass transition temperature (tg) as a parameter for monitoring the cure of an amine/epoxy system at constant heating rates ”, Journal of Applied Polymer Science, vol.41, Issue 7-8, Page 1895-1912, 10 Mar 2003.
[65] D. A., Riedlinger. N. Sun, C. E. Frazier, “The glass transition temperature (Tg) as an index of chemical conversion for a high-Tg amine/epoxy system: Chemical and diffusion-controlled reaction kinetics ”, Journal of Applied Polymer Science, vol.41, Issue 11-12, Page 2885-2929, 10 Mar 2003.
[66] J. K. Gillham, G. Wisanrakkit, J. B. Enns, “The glass transition temperature (tg) as a parameter for monitoring the cure of an amine/epoxy system at constant heating rates ”, Journal of Applied Polymer Science, vol.41, Issue 7-8, Page 1895-1912, 10 Mar 2003.
[67] D. A., Riedlinger. N. Sun, C. E. Frazier, “The glass transition temperature (Tg) as an index of chemical conversion for a high-Tg amine/epoxy system: Chemical and diffusion-controlled reaction kinetics ”, Journal of Applied Polymer Science, vol.41, Issue 11-12, Page 2885-2929, 10 Mar 2003.
[68] S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, S. Tanabe, “YAG glass-ceramic phosphor for white LED (I): background and development”, SPIE, vol. 594111.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔