(44.192.112.123) 您好!臺灣時間:2021/03/01 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡政良
研究生(外文):Cheng-liang Tsai
論文名稱:電化學製備聚苯胺奈米薄膜應用於有機太陽能電池之研究
論文名稱(外文):The Study of Electrochemical Deposited PANI Thin Nano-film for Organic Solar Cells
指導教授:張美濙
指導教授(外文):Mei-Ying Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:118
中文關鍵詞:循環伏安法電化學聚苯胺有機太陽能電池電洞傳輸層苯胺單體濃度
外文關鍵詞:aniline monomer concentrationpolyanilineelectrochemicalcyclic voltammetryorganic solar cellshole transport layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以電化學(循環伏安法)聚合方式合成聚苯胺薄膜於ITO陽極基板上,將其應用在高分子有機太陽能電池當作電洞傳輸層,其元件結構ITO(150nm)/PANI(50nm)/P3HT:PCBM(100nm)/Al(200nm),探討調配不同的苯胺單體濃度所聚合而成的聚苯胺薄膜其表面形態、導電度、透光度等等,進而對元件效率的影響並與傳統電洞傳輸層PEDOT : PSS做比較。
在本研究中吾人對聚苯胺薄膜做了一系列材料特性分析,發現不同單體濃度所聚合而成的聚苯胺薄膜,其吸收光譜在450 nm~650 nm波段中(主動層的主要吸收波段),穿透度至少都達80%以上,且導電度高達0.6 S/cm,擁有如此良好的光電特性,故可知聚苯胺薄膜具有作為電洞傳輸層的基本能力。而PANI薄膜的表面形態,經由本研究可知,可藉由調配不同的單體濃度使PANI薄膜的表面型態有所改變。
在元件效率表現探討上,發現元件效率主要會受到PANI表面形態的改變而有所影響,相較於其他濃度參數,在苯胺單體濃度0.3M參數下聚合PANI薄膜,擁有最適當的表面形態,其元件在本研究中有最高的功率轉換效率,可達1.76%。
This research is to synthesize PANI (polyaniline) thin film for polymer organic solar cells as a hole transport layer on the top of ITO substrate by using electrochemical (cyclic voltammetry) method. The device structure is ITO (150 nm) / PANI (50 nm) / P3HT: PCBM (100 nm) / Al (200 nm). We investigated surface morphology, conductivity, and light transmission of the PANI thin film from different aniline monomer concentration and studied the factors on device efficiency, also compared with the device structured with hole transport layer PEDOT:PSS.
In this study, we found PANI thin films synthesized with different aniline monomer concentration, their light transmission over 80% at the range of 450 nm ~ 650nm wavelength and the conductivity up to 0.6 S/cm. It shows that PANI thin film suitably act as hole transport layer. In addition, we found morphology of PANI thin film that varied with different aniline monomer concentration.
The power conversion efficiency of the device mainly affected by morphology with different aniline monomer concentration. Comparing to other parameters of concentration, the 0.3M aniline monomer concentration polymerized PANI thin film owned the most appropriate surface morphology, and the power conversion efficiency up to 1.76%.
致謝............................................................................I
中文摘要..................................................................III
Abstart.....................................................................IV
目錄..........................................................................V
圖目錄....................................................................VII
表目錄.....................................................................X
第一章 緒論............................................................1
1-1 新能源的開發..................................................1
1-2 太陽能電池的分類與介紹..............................2
1-3 有機太陽能電池結構演進..............................5
1-4 有機太陽能電池材料簡介..............................9
1-5 導電高分子發展過程....................................12
1-6 導電高分子-聚苯胺......................................15
1-7 研究動機.......................................................23
第二章 理論基礎.................................................25
2-1 能量及電荷轉移機制...................................25
2-2 光電轉換原理...............................................27
2-3 太陽能電池等效電路...................................33
2-4 光電特性參數...............................................35
2-5 太陽光模擬...................................................40
第三章 實驗.........................................................45
3-1 實驗架構.......................................................45
3-2 實驗藥品.......................................................47
3-3 製程設備.......................................................49
3-4 量測分析儀器...............................................52
3-5 藥品配製.......................................................65
3-6 實驗步驟.......................................................67
第四章 結果與討論.............................................72
4-1 材料分析結果與討論...................................72
4-2 元件製程結果與討論...................................88
第五章 總結.........................................................99
參考文獻............................................................101
[1] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
[2] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
[3] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Lederc, K. Lee, and A. J. Heeger, Nat. photo. 3, 297 (2009).
[4] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, nat. photo. 3, 649 (2009).
[5] H. Kallmann, and M. Pope, J. Chem. Phys. 30, 585 (1958).
[6] 陳盛煒, “光伏薄膜混摻Alq3的研究” , 中山大學碩士論文, (2005).
[7] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, Synth. Met. 111-112, 139 (2000).
[8] X. Gong, D. Moses, A. J. Heeger, S. Liu, and A. K. Y. Jen, Appl. Phys. Lett. 83, 1 (2003).
[9] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
[10] S. Alem, R. de Bettignies, J.-M. Nunzi, and M. Cariou, Appl. Phys. Lett. 84, 2178 (2004).
[11] M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
[12] J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. C. Bradley, Synth. Met. 139, 569 (2003).
[13] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem and J. A. Goitia, J. Appl. Phys. 79, 2745 (1996).
[14] M. Al-Ibrahim, H. K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss, Organic Electronics 6, 65 (2005).
[15] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
[16] E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3222 (1984).
[17] H. Spanggard, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004).
[18] G. Natta, G. Mazzanti, and P. Corradini, Atti. Accad. Naz. Lince
Rend. Cl. Sci. Fis. Mat. Natur. 25, 3 (1958).
[19] H. Shirakawa, and S. Ikeda, Polym. J. 2, 231 (1971).
[20] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun, 578 (1977).
[21] B. Wessling, Synth. Met. 4, 119 (1991).
[22] H. Letherby, J. chem. Soc. 15, 161 (1862).
[23] A. G. Green, and A. E. Woodhead, J. chem. Soc. 97, 2388 (1910).
[24] A. G. Green, and A. E. Woodhead, J. chem. Soc. 101, 1117 (1912).
[25] M. Jozefowicz, Thesis, University of Paris, (1963).
[26] M. Jozefowicz, L. T. Yu, J. Perichon, and R. Buvet, J. poly. Sci. C. 22, 1187 (1969).
[27] R. D. Surville, M. Jozefowicz, L. T. Yu, J. Pepichon, and R. Buvet,
Electrochimica Acta 13, 1451 (1968).
[28] A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, and N. L. D. Somasir, Mol. Cryst. Liq. Cryst. 121, 173 (1985).
[29] A. G. MacDiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, Synth. Met. 18, 285 (1987).
[30] A. Ray, G. E. Asturias, D. L. Kershner, A. F. Richter, A. G. MacDiarmid, and A. J. Epstein, Synth. Met. 29, 141 (1989).
[31] D. M. Mohilner, R. N. Adams, and W. J. Argersinger, J. Am. Chem. Soc. 84, 3618 (1962).
[32] J. Bacon, and R. N. Adams, J. Am. Chem. Soc. 90, 6596 (1968).
[33] E. M. Genies, and C. Jsintavis, Electroanal. Chem. 195, 109 (1985).
[34] A. G. MacDiarmid, J. H. Chiang, W. Huang, B. D. Humphery, and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst. 125, 309 (1985).
[35] W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem. 91, 5813 (1987).
[36] M. A. Green, Solar Cells : Operating Principles, Technology, and System Application, (1982).
[37] 莊嘉琛, 太陽能工程-太陽電池篇, 全華(1997).
[38] B. Burnett, The Basic Physics and Design of Ⅲ-Ⅴ Multi-junction Solar Cells, (2002).
[39] M. P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, (1970).
[40] 蔡宜展, “OLED新穎紅光摻雜材料特性之研究” , 中山大學碩士論文, (2005).
[41] 陳金鑫、黃孝文, 有機電激發光材料與元件, 五南(2005).
[42] 陳一帆, “RF濺鍍式ITO薄膜沉積之後熱處理效應” , 中山大學碩士論文, (2005).
[43] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
[44] 李俊賢, “聚苯胺薄膜應用於有機高分子太陽能元件之研究” , 中山大學碩士論文, (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔