跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王詠毅
研究生(外文):Yong-yi Wang
論文名稱:利用摩擦攪拌製程探討添加鎂對超細鋁鎂合金機械性質的綜合影響
論文名稱(外文):Mg effect on mechanical properties of ultrafine grained Al-Mg alloyproduced by friction stir processing
指導教授:何扭今何扭今引用關係
指導教授(外文):New-Jin Ho
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:103
中文關鍵詞:摩擦攪拌製程鋁鎂合金超細晶
外文關鍵詞:ultrafine grainedAl-Mg alloyfriction stir processing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗藉由摩擦攪拌製程將不同重量百分比組成的鋁及鎂粉
末,並利用不同工作頭尺寸(凸銷和肩部)或轉速來製作成晶粒範圍
0.5μm~1.5μm 不同晶粒大小的鋁鎂合金。之後我們利用拉伸測試
(1x10-1 mm/s、1x10-3 mm/s、1x10-5mm/s)來瞭解機械性質,以及利用
掃描式顯微鏡(SEM)和X-ray 繞射儀來觀察微觀結構和組成相,此外
也針對此材料變形演化作探討。
本研究中可以很清楚的發現藉由摩擦攪拌製程添加鎂固溶於鋁
基材時可以同時提升強度和均勻延展性,添加越多的鎂含量效果越明
顯。在實驗中發現許多微小的滑移帶提供良好的加工硬化率,所以擁
有優異的均勻延展性。此外,鋁鎂合金拉伸曲線上經常出現抖動情
形,此為固溶鎂原子與移動差排產生交互作用,文獻中稱為動態性變
時效。在此我們將利用應變速率和鎂含量的改變,對於抖動型態的影
響且對於抖動型態是否會影響機械性質來作探討。
Al-Mg solid solution alloys of various grain sizes were prepared by
friction stir processing (FSP). The mechanical properties and
micro-structure evolution were studied. The results show that the
mechanical properties including tensile strength and ductility are
improved by increasing Mg weight fraction. The homogeneous
deformation is enhanced by fined slip bands within the grains. On the
other hand, Dynamic strain aging or serrated flow stress has been wildly
investigated in Al-Mg alloys. Effects of strain rate and magnesium
content on dynamic strain aging are also discussed.
總目錄
中文摘要......................................................................................................................... I
英文摘要........................................................................................................................ II
總目錄 ........................................................................................................................ III
表目錄 .........................................................................................................................V
圖目錄 ....................................................................................................................... VI
第一章 前言.................................................................................................................. 1
1.1 研究背景說明.................................................................................................. 1
1.2 研究動機與目的.............................................................................................. 3
第二章文獻回顧.......................................................................................................... 5
2-1 摩擦攪拌焊接(Friction Stir Welding,FSW)................................................. 5
2.1.1 摩擦攪拌焊接原理............................................................................... 5
2.1.2 摩擦攪拌製程(Friction Stir Process,FSP) ......................................... 5
2.2 Al-Mg 合金基本特性 ...................................................................................... 6
2.3 Al-Mg 合金的機械性質 .................................................................................. 6
2.3.1 固溶強化............................................................................................... 7
2.3.2 加工硬化行為....................................................................................... 8
2.3.3 細晶強化............................................................................................... 9
2.4 超細晶粒材料的延展性................................................................................ 10
2.4.1 利用不同大小的晶粒混合(bimodal grain size) ................................ 10
2.4.2 應變速率控制延展性......................................................................... 11
2.4.3 添加強化相顆粒或均勻析出相......................................................... 12
2.4.4 降低疊差能(stacking fault energy) .................................................... 12
2.5 動態應變時效(Dynamic Strain Ageing) ....................................................... 13
第三章實驗方法........................................................................................................ 15
3.1 實驗材料成分和製備.................................................................................... 15
3.1.1 微米級鋁粉及鎂粉............................................................................. 15
3.1.2 實驗塊材製作..................................................................................... 15
3.2 摩擦攪拌製程............................................................................................... 16
3.2.1 工具頭及夾具..................................................................................... 16
3.2.2 摩擦攪拌製程機器簡介.................................................................... 16
3.2.3 摩擦攪拌製程步驟............................................................................ 16
3.3 巨觀結構與顯微組織分析............................................................................ 16
3.3.1 X-Ray 繞射分析 ................................................................................. 16
IV
3.3.2 掃描電子顯微鏡觀察及分析............................................................. 17
3.4 機械性質量測與分析.................................................................................... 17
3.4.1 拉伸測試............................................................................................. 17
第四章實驗結果與討論.............................................................................................. 18
4.1 繞射分析........................................................................................................ 18
4.2 晶粒尺寸分析................................................................................................ 18
4.3 機械性質量測................................................................................................ 19
4.3.1 應變應力曲線..................................................................................... 19
4.3.2 晶粒尺寸及鎂含量與加工硬化率的關係......................................... 20
4.3.3 不同合金系統比較............................................................................. 22
4.3.4 應變速率對於延展性的綜合影響..................................................... 24
4.4 Portevin-Le Chatelier (PLC)效應特徵 .......................................................... 26
第五章結論................................................................................................................ 29
第六章參考文獻........................................................................................................ 31
表 ....................................................................................................................... 36
圖 ....................................................................................................................... 44
1. Birringer, R., "Nanocrystalline Materials". Materials Science and Engineering
A, 117(1989) 33-43.
2. Kumar, K.S., H. Van Swygenhoven, and S. Suresh, "Mechanical behavior of
nanocrystalline metals and alloys". Acta Materialia, 51(2003) 5743-5774.
3. Valiev, R., "Nanostructuring of metals by severe plastic deformation for
advanced properties". Nature Materials, 3(2004) 511-516.
4. Valiev, R.Z. and I.V. Alexandrov, "Nanostructured materials from severe
plastic deformation". Nanostructured Materials, 12(1999) 35-40.
5. Nieh, T.G. and J. Wadsworth, "Hall-Petch Relation in Nanocrystalline Solids".
Scripta Metallurgica Et Materialia, 25(1991) 955-958.
6. Zhu, Y.T. and X.Z. Liao, "Nanostructured metals - Retaining ductility". Nature
Materials, 3(2004) 351-352.
7. Azizi-Alizamini, H., M. Militzer, and W.J. Poole, "A novel technique for
developing bimodal grain size distributions in low carbon steels". Scripta
Materialia, 57(2007) 1065-1068.
8. Wang, Y.M. and E. Ma, "Three strategies to achieve uniform tensile
deformation in a nanostructured metal". Acta Materialia, 52(2004) 1699-1709.
9. Han, B.Q., J.Y. Huang, Y.T. Zhu, et al., "Effect of strain rate on the ductility of
a nanostructured aluminum alloy". Scripta Materialia, 54(2006) 1175-1180.
10. Horita, Z., K. Ohashi, T. Fujita, et al., "Achieving high strength and high
ductility in precipitation-hardened alloys ". advanced material, 17(2005)
1599-1602.
11. Kim, J.K., H.K. Kim, J.W. Park, et al., "Large enhancement in mechanical
properties of the 6061 Al alloys after a single pressing by ECAP". Scripta
Materialia, 53(2005) 1207-1211.
12. Zhao, Y.H., Y.T. Zhu, X.Z. Liao, et al., "Tailoring stacking fault energy for
high ductility and high strength in ultrafine grained Cu and its alloy". Applied
Physics Letters, 89(2006) -.
32
13. Hu, C.M., "Solute and Dispersoid combined effects on mechanical properties of
ultrafine grained Al alloy produced by friction stir processing". Sun Yat-Sen
university Papers, 2009)
14. Lai, C.M., "Work hardening behavior of ultra fine grained commercially
aluminum alloy containing nanoscale alumina dispersoids produced by friction
stir processing". Sun Yat-Sen University Papers, 2009)
15. Argon, A., Strengthening Mechanisms in Crystal Plasticity:. 2007: Oxford
University Press.
16. Löffler, H. and D. Bergner, Structure and structure development of Al-Zn
alloys.1995: Wiley-VCH.
17. Li, Y., L.E. Murr, and J.C. McClure, "Flow visualization and residual
microstructures associated with the friction-stir welding of 2024 aluminum to
6061 aluminum". Materials Science and Engineering A, 271(1999) 213-223.
18. Mishra, R.S. and Z.Y. Ma, "Friction stir welding and processing". Materials
Science & Engineering R-Reports, 50(2005) 1-78.
19. Mishra, R.S., "Friction Stir Process technologies". Advanced Material
Processes, 161(2003) 43-46.
20. Shackelfored, J.F., Introduction to Materials Science for Engineers 6th. 2005:
Pearson Education. 327.
21. Nayeb-Hashemi, A.A. and J.B. Clark, Phase diagrams of binary magnesium
alloys. 1988: ASM International.
22. Hatch, J.E., Aluminum: properties and physical metallurgy. 1984: American
Society for Metals.
23. Polmear, I.J., Light alloys: metallurgy of the light metals. 1982: E. Arnold.
24. Reed-Hill, R.E. and R. Abbaschian, "Physical Metallurgy Principles 3th".
1994)
25. Vlack, L.H.V., Elements of materials science and engineering. 1989:
Addison-Wesley.
26. Scudino, S., M. Sakaliyska, K.B. Surreddi, et al., "Mechanical alloying and
milling of Al-Mg alloys". Journal of Alloys and Compounds, 483(2009) 2-7.
33
27. Bowen, A. and P.G. Partridge, "Limitations of the Hollomon strain-hardening
equation". Journal of Physics D: Applied Physics, 7(1974)
28. Zhang, F., M.Z. Huang, and D. Shi, "The Relationship between the
Strain-Hardening Exponent N and the Microstructure of Metals". Materials
Science and Engineering A, 122(1989) 211-213.
29. Chen, J., L. Lu, and K. Lu, "Hardness and strain rate sensitivity of
nanocrystalline Cu". Scripta Materialia, 54(2006) 1913-1918.
30. Chokshi, A.H., A. Rosen, J. Karch, et al., "On the Validity of the Hall-Petch
Relationship in Nanocrystalline Materials". Scripta Metallurgica, 23(1989)
1679-1683.
31. Elsherik, A.M., U. Erb, G. Palumbo, et al., "Deviations from Hall-Petch
Behavior in as-Prepared Nanocrystalline Nickel". Scripta Metallurgica Et
Materialia, 27(1992) 1185-1188.
32. Thompson, A.A.W., "Yielding in Nickel as a Function of Grain or Cell-Size".
Acta Metallurgica, 23(1975) 1337-1342.
33. Saito, Y., H. Utsunomiya, N. Tsuji, et al., "Novel ultra-high straining process
for bulk materials - Development of the accumulative roll-bonding (ARB)
process". Acta Materialia, 47(1999) 579-583.
34. Kim, W.J., C.S. Chung, D.S. Ma, et al., "Optimization of strength and ductility
of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging".
Scripta Materialia, 49(2003) 333-338.
35. Witkin, D., Z. Lee, R. Rodriguez, et al., "Al-Mg alloy engineered with bimodal
grain size for high strength and increased ductility". Scripta Materialia, 49(2003)
297-302.
36. Zhao, Y.H., X.Z. Liao, Z. Jin, et al., "Microstructures and mechanical properties
of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions
during annealing". Acta Materialia, 52(2004) 4589-4599.
37. Zhao, Y.H., X.Z. Liao, Y.T. Zhu, et al., "Enhanced mechanical properties in
ultrafine grained 7075 Al alloy". Journal of Materials Research, 20(2005)
288-291.
38. Fang, D.R., Q.Q. Duan, N.Q. Zhao, et al., "Tensile properties and fracture
mechanism of Al-Mg alloy subjected to equal channel angular pressing".
Materials Science and Engineering A, 459(2007) 137-144.
34
39. Jin, H. and D.J. Lloyd, "Effect of a duplex grain size on the tensile ductility of
an ultra-fine grained Al-Mg alloy, AA5754, produced by asymmetric rolling
and annealing". Scripta Materialia, 50(2004) 1319-1323.
40. Hayes, R.W., D. Witkin, F. Zhou, et al., "Deformation and activation volumes
of cryomilled ultrafine-grained aluminum". Acta Materialia, 52(2004)
4259-4271.
41. Hoppel, H.W., J. May, and M. Goken, "Enhanced strength and ductility in
ultrafine-grained aluminium produced by accumulative roll bonding".
Advanced Engineering Materials, 6(2004) 781-784.
42. Lee, W.S. and T.H. Chen, "Rate-dependent deformation and dislocation
substructure of Al-Sc alloy". Scripta Materialia, 54(2006) 1463-1468.
43. Lu, L., S.X. Li, and K. Lu, "An abnormal strain rate effect on tensile behavior in
nanocrystalline copper". Scripta Materialia, 45(2001) 1163-1169.
44. Zhang, H.Z., Z.H. Jiang, H.S. Lian, et al., "Strain rate dependence of tensile
ductility in an electrodeposited Cu with ultrafine grain size". Materials Science
and Engineering a-Structural Materials Properties Microstructure and
Processing, 479(2008) 136-141.
45. Zhao, Y.H., X.Z. Liao, S. Cheng, et al., "Simultaneously increasing the ductility
and strength of nanostructured alloys". Advanced Materials, 18(2006) 2280
46. Hu, C.M., C.M. Lai, X.H. Du, et al., "Enhanced tensile plasticity in
ultrafine-grained metallic composite fabricated by friction stir process". Scripta
Materialia, 59(2008) 1163-1166.
47. Yamakov, V., D. Wolf, S.R. Phillpot, et al., "Deformation-mechanism map for
nanocrystalline metals by molecular-dynamics simulation". Nature Materials,
3(2004) 43-47.
48. Ebrahimi, F., Z. Ahmed, and H. Li, "Effect of stacking fault energy on plastic
deformation of nanocrystalline face-centered cubic metals". Applied Physics
Letters, 85(2004) 3749-3751.
49. Sun, P.L., Y.H. Zhao, J.C. Cooley, et al., "Effect of stacking fault energy on
strength and ductility of nanostructured alloys: An evaluation with minimum
solution hardening". Materials Science and Engineering a-Structural Materials
Properties Microstructure and Processing, 525(2009) 83-86.
35
50. Cottrell, A.H., " A note on the Portevin-Le Chatelier effect ". Philosophical
Magazine 44(1953) 829-832
51. Chihab, K. and C. Fresssengeas, "Time distribution of stress drops, critical
strain and crossover in the dynamics of jerky flow". Materials Science and
Engineering a-Structural Materials Properties Microstructure and Processing,
356(2003) 102-107.
52. Kim, I.S. and M.C. Chaturvedi, "Serrated Flow in Al-5 wt.% Mg Alloy".
Materials Science and Engineering, 37(1979) 165-172.
53. Lin, C.-Y., "Effect of FSP on Microstucture and Tensile Properties of 5083
Casting Al Alloy with Equal Axial Grain Structure". National Cheng Kung
University Paper, 2006)
54. Pink, E. and A. Grinberg, "Stress Drops in Serrated Flow Curves of A15mg".
Acta Metallurgica, 30(1982) 2153-2160.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top