(3.235.108.188) 您好!臺灣時間:2021/02/28 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃志權
研究生(外文):Zhi-Quan Huang
論文名稱:BC2N的原子結構與力學性質
論文名稱(外文):Atomic structure and mechanical properties of of BC2N
指導教授:莊豐權
指導教授(外文):Feng-Chuan Chuang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:42
中文關鍵詞:貪婪演算法
外文關鍵詞:greedy algorithmfirst principleBC2N
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於貪婪演算法的系統化搜尋發現 BC2N 超晶格的結構排列。使用樹狀資料結構, 我們已經獲得先前 Sun 等人發現的七種 c-BC2N 1x1x1 晶格的原子結構 [Phys. Rev. B 64, 094108 (2001)]。 而且, 將貪婪演算法應用在樹狀資料結構上, 發現在 c-BC2x2x2 , 3x3x3, 和4x4x4的超晶格上擁有最大數目碳-碳鍵結的原子結構。這些新的結構排列仍未被之前的文獻提出。在 c-BC2N 超晶格上已經搜索到512顆原子。這些原子在超晶格上的位置皆為類鑽石結構形式。並且碳原子與硼、氮原子分別形成八面體的結構。這些碳原子構成的八面體結構被{111}面所包圍著,同時每個面和鄰近硼與氮原子所構成的八面體接觸。新發現的低能量結構的電性與力學也已被分析。

Structural motifs for the BC2N superlattices were identified from a systematic search based on a greedy algorithm. Using a tree data structure, we have retrieved seven structural models for c-BC2N 1x1x lattice which were identified previously by Sun et al. [Phys. Rev. B 64, 094108 (2001)]. Furthermore, the atomic structures with the maximum number of C-C bonds for c-BC2N 2x2x2, 3x3x3, and 4x4x4 superlattices were found by imposing the greedy algorithm in the tree data structure. This new structural motif has not been previously proposed in the literature. A total of up to 512 atoms in the c-BC2N superlattice are taken into consideration. The atoms in these superlattices are in diamond-like structural form. Furthermore, the C atoms, as well as B and N atoms, form the octahedral motif separately. The octahedral structure consisting of C is bounded with {111} facets, and each facet is interfaced to a neighboring octahedral structure consisting of B and N atoms. The electronic and mechanical properties of newly identified low energy structures were analyzed.
摘要 i
ABSTRACT ii
LIST OF FIGURES v
LIST OF TABLES vi
1 Introduction 1
2 Theory 3
2.1 Born-Oppenheimer approxmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Honhenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Exchange-correlation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Psuedopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Norm-Conserving pseudopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Project augmented plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Hellman-Feynman theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Linear search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Struactural searach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Tree structure and greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Choice of fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Structural comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Results and discussions 19
3.1 Structural models and energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Ideal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Conclusions 30
References 31

[1] E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, Phys. Rev. B 51, 12149 (1995).
[2] H. Sun, Seung-Hoon Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 64, 094108 (2001).
[3] V. L. Solozhenko, D. Andrault, G. Fiquet, M.Mezouar, and D. C. Rubie, Appl. Phys. Lett. 78, 1385 (2001).
[4] S. N. Tkachev, V. L. Solozhenko, P. V. Zinin, M. H.Manghnani, and L. C.Ming, Phys. Rev. B 68, 052104 (2003).
[5] E. Kim, T. Pang,W.Utsumi, V. L. Solozhenko, and Y. Zhao, Phys. Rev. B 75, 184115 (2007).
[6] W. Utsumi, S. Nakano, K. Kimoto, T. Okada, M. Isshiki, T. Taniguchi, K. Funakoshi, M. Akaishi, and O. Shimomura, Proceedings of AIRAPT-18, Beijing, China, 2001 (unpublished), p. 186.
[7] Y. Zhao, D.W. He, L.L. Daemen, T.D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J.Zhang, G.Shen, J. Qian, and T.W. Zerda, J.Mater. Res. 17, 3139(2002).
[8] T. Komatsu, M. Nomura, Y. Kakudate, and S. Fujiwara, J.Mater. Chem. 6, 1799 (1996).
[9] H. Dong, D. He, T. S. Duffy, and Y. Zhao, Phys. Rev. B 79, 014105 (2009).
[10] S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem.Mater. 6, 2246 (1994).
[11] S. Nakano, M. Akaishi, and T. Sasaki, Chem.Mater. 13, 350 (2001).
[12] V. L. Solozhenko, S. N. Dub, and N. V. Novikov, Diamond Relat.Mater. 10, 2228 (2001).
[13] Z. C. Pan, H. Sun, and C. F. Chen, Phys. Rev. Lett. 98, 135505 (2007).
[14] S. Chen, X. G. Gong, and S.H.Wei, Phys. Rev. Lett. 98, 015502 (2007).
[15] X. Luo, X. Guo, B. Xu, Q. Wu, Q. Hu, Z. Liu, J. He, D. Yu, Y. Tian, and H. T. Wang, Phys. Rev. B 76, 094103 (2007).
[16] Quan Li, Mei Wang, Artem R. Oganov, Tian Cui, Yanming Ma, and Guangtian Zou, J. Appl. Phys. 105, 053514 (2009).
[17] J.Maddox, Nature 335 201 (1988).
[18] A. R. Oganov and C.W. Glass, J. Chem. Phys. 124, 244704 (2006).
[19] X.F. Fan, H.Y. Wu, Z.X. Shen, Jer-Lai Kuo, Diamond and Related Materials, 18, 1278, (2009).
[20] N. L. Abraham and M.I.J. Probert, Phys. Rev. B 73, 224104 (2006).
[21] N. L. Abraham and M.I.J. Probert, Phys. Rev. B 77, 134117 (2008).
[22] Volker Blum, Gus L. W. Hart, Michael J. Walorski, and Alex Zunger, Phys. Rev. B 72, 165113 (2005).
[23] Giancarlo Trimarchi, Arthur J. Freeman, and A. Zunger, Phys. Rev. B 80, 092101 (2009).
[24] Laura Filion andMarjolein Dijkstra, Phys. Rev. E 79, 046714 (2009).
[25] Yansun Yao, John S. Tse, and Kaori Tanaka, Phys. Rev. B 77, 052103 (2008).
[26] Scott M.Woodley and Richard Catlow, NatureMaterials 7, 937(2008).
[27] TL Chan, CV. Ciobanu, F.-C. Chuang, N. Lu, C.-Z.Wang and K.-M. Ho, Nano Letters 6(2) 277 (2006).
[28] N. Lu, C.V. Ciobanu, T.L. Chan, F.C. Chuang, C.Z.Wang, and K.M.Ho, Journal of Physical Chemistry C 111, 7933 (2007).
[29] Nathan Luke Abraham, Ph. D thesis, A Genetic Algorithm for Crystal Structure Prediction, Ch. 7, (2006).
[30] M. Born and J. R. Oppenheimer, Ann. Physik, 84, 457 (1927).
[31] L. H. Thomas, Proc. Cambridge Phil. Roy. Soc. 23, 542 (1927).
[32] E. Fermi, Rend. Accad. Naz. Lincei, 6, 602 (1927).
[33] P. A. M. Dirac, Proc. Cambridge Phil. Roy. Soc. 26, 376 (1930).
[34] E. Teller, Rev.Mod. Phys. 34, 627 (1962).
[35] N. L. Balazs, Phys. Rev. 156, 42 (1967).
[36] P. Hohenberg andW. Kohn, Phys. Rev. 136, B864 (1964).
[37] W. Kohn and L. J. Sham, Phys. Rev. 140, A1135 (1965).
[38] D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
[39] P. E. Blochl, Phy. Rev. B. 50, 17953 (1994).
[40] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[41] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms 2nd. edition, The MIT Press (2001).
[42] D.M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 566 (1980).
[43] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[44] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[45] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[46] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
[47] H. J.Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[48] D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995).
[49] K.M. Ho, A.A. Shvartsburg, B.C. Pan, Z.Y. Lu, C.Z. Wang, J. Wacker, J.L. Fye, and M.F. Jarrold, Nature 392 582 (1998).
[50] F.-C. Chuang, C.Z.Wang, and K.M. Ho, Phys. Rev. B 73 125431 (2006).
[51] F.-C. Chuang, Cristian V. Ciobanu, V. B. Shenoy, Cai-Zhuang Wang, and Kai-Ming Ho, Surf. Sci. Lett. 573, L375 (2004).
[52] 20. F.-C. Chuang, B. Liu, C.Z. Wang, T.L. Chan and K.-M. Ho, Surf. Sci. Lett. 598 L339 (2005).
[53] Diamond Demonstration Version 3.2c is publised by CRYSTAL IMPACT.
[54] Y. Zhang, H. Sun, and C. Chen, Phys. Rev. Lett. 93, 195504 (2004).
[55] D. Roundy, C. R. Krenn, Marvin L. Cohen, and J. W. Morris, Phys. Rev. Lett. 82, 2713 (1999).
[56] D. Roundy, C. R. Krenn,Marvin L. Cohen, and J.W.Morris Jr, PhilosophicalMagazine A 81, 1725-1747 (2001).
[57] Faming Gao, Julong He, Erdong Wu, Shimin Liu, Dongli Yu, Dongchun Li, Siyuan Zhang, and Yongjun Tian, Phys. Rev. Lett. 91, 015502 (2003).
[58] A. Simunek and J. Vackar, Phys. Rev. Lett. 96, 085501 (2006).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔