(3.232.129.123) 您好!臺灣時間:2021/03/06 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李冠樺
研究生(外文):Guan-Hua Lee
論文名稱:單根氮化鎵奈米柱之缺陷研究
論文名稱(外文):The study of defects in single GaN nanorod
指導教授:杜立偉杜立偉引用關係
指導教授(外文):Li-Wei Tu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:54
中文關鍵詞:氮化鎵奈米柱半導體
外文關鍵詞:GaN nanorodssemi-conductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文是針對在溫度的變化下,單根氮化鎵奈米柱(GaN nanorod)之缺陷研究,以及與bulk奈米柱之間的關係,並且以掃描式顯微鏡(SEM)、陰極螢光(CL)、微光致螢光(μ-PL)做為量測工具。本實驗最主要目的,藉由溫度的變化,在光譜圖上能有效的觀察到氮化鎵奈米柱之缺陷,並且探討奈米柱高比值的面積-體積比所產生的表面態。由CL光譜結果觀察出在20K時的表面態訊號較能隙間躍遷的訊號大。能量3.21eV的訊號來自於氮化鎵和矽基板之間的缺陷。由單根奈米柱在20K的訊號顯示出底部的表面態訊號大於來自頂部的表面態訊號。
In this article, we report the study of defects between single and bulk GaN nanorods in temperature dependence. High quality of GaN nanorods have been investigated by μ-photoluminescence. Optical properties and surface morphology have been analyzed by a series of measurements, including field-emission electron microscopy (FESEM), and cathodoluminescence (CL). CL data reveal that the intensity of surface state emission is larger than near-band-edge emission at 20K . The 3.21eV peak reveals the structural defect at GaN/Si interface. The surface state emission from bottom is larger than top.
序論 ............................................................... 1
1.1氮化鎵(GaN)的發展 ....................................................................................... 1
1.2氮化鎵奈米柱(GaN nanorods) ..................................................................... 2
第二章、儀器原理與介紹 ............................................. 5
2.1 螢光 ................................................................................................................ 5
2.1.1 微光致螢光(μ-PL)系統 .................................................................. 5
2.1.2 螢光導論 ............................................................................................ 6
2.1.3 光致螢光 ............................................................................................ 6
2.1.4 輻射耦合與非輻射耦合 .................................................................... 7
2.1.5 躍遷機制 ............................................................................................ 8
2.2 掃描式電子顯微鏡(Scanning electron microscope) .......................... 11
2.3 陰極螢光 (Cathodoluminescence, CL) .................................................. 14
第三章 樣品介紹 ................................................... 16
3.1 樣品製備 ...................................................................................................... 16
3.2 樣品參數 ...................................................................................................... 19
第四章 實驗結果分析 ............................................... 20
4.1 SEM結果 ....................................................................................................... 20
4.1.1 SEM定位 ........................................................................................... 20
4.1.2 SEM分析 ........................................................................................... 22
4.2 Micro-PL光譜分析 ..................................................................................... 26
4.3 陰極螢光分析 .............................................................................................. 28
第五章 結論 ....................................................... 44
參考文獻 .......................................................... 45
參考文獻
[1] E. F. Schubert, Light-Emitting Diodes 2nd edition, Cambridge University Press, p.223, (2006).
[2] M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, and R. Beresford, J. Cryst. Growth 183, 23 (1998).
[3] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth 189/190, 138 (1998)
[4] S. Guha, N. Bojarczuk, M. Johnson, and J. Schetzina, Appl. Phys. Lett. 75, 463 (1999).
[5] E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, S. I. Molina, A. M. Sanchez, F. J. Pacheco, and R. Garcia, J. Cryst. Growth 201/202, 296 (1999).
[6] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 , 89 (1964).
[7] Vapor-liquid-solid mechanism of single crystal growth". Appl. Phys. Lett. 4 (5): 89.
[8] Semiconductor Nanostructures for Optoelectronic Applications. Norwood, MA: Artech House, Inc.. pp. 191–192.
[9] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He and P. Yang, Nano Lett. 3 (2003) 867.
[10] E. Calleja, M. A. OEanchez-Garæia, F. J. OEanchez, F. Calle, F. B. Naranjo, and Muòoz, Phys. Rev. B 62, 16826 (2000).
[11] Jelena Ristic, Enrique Calleja, Sergio Fernandez-Garrido, Laurent Cerutti, Achim Trampert, Uwe Jahn, Klaus H. Ploog, J. Cryst. Growth 310 (2008) 4035–4045.
[12] D.R. Vij ”Luminescence of Solids”, p.3.
[13] MARK FOX “Optical Properties of Solids”, p.98.
[14] E. Fred Schubert, “Light-Emitting Diodes”, p.35.
[15] Y.P. Varshni, Physica, 34, 149 (1967).
[16] L.W. Tu, Appl. Phys. Lett. 82, 1601 (2003).
[17] M. A. Reshchikov et al., J. Appl. Phys. 94, 5623 (2003).
[18] M. A. Reshchikov, Progress in Condensed Matter Research (Nova Science Publishers, Inc., New York, to be published).
[19] V. Consonni, M. Knelangen, U. Jahn, A. Trampert, L. Geelhaar, and H. Riechert, APL 95, 241910 (2009).
[20] A. P. Levanyuk and V. V. Osipov, Usp. Fiz. Nauk 133, 427 (1981).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔