(3.237.178.91) 您好!臺灣時間:2021/03/07 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃文宏
研究生(外文):Wen-Hung Haung
論文名稱:低溫成長非晶相Zn1-x-yAlxSnyO薄膜及物性之研究
論文名稱(外文):Low Temperature Growth and Physical Properties of Zn1-x-yAlxSnyO thin films
指導教授:周雄
指導教授(外文):Hsiung Chou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:67
中文關鍵詞:低溫濺鍍氧化鋅非晶相
外文關鍵詞:amorphousAZOZnOlow temperature
相關次數:
  • 被引用被引用:4
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬尋找成長非晶態不同摻雜氧化鋅薄膜之成長條件,使該薄膜於可見光區擁有高穿透率(>80%)。材料上以ZnO為基材,摻雜2%及20%之Al和高比率之Sn,形成Zn1-x-yAlxSny之非晶相薄膜。技術上借由高週波多槍共濺鍍系統,調變成長腔體內之不同成長溫度、工作壓力與電漿功率,期望找到成長為高透明度且為非晶薄膜之最佳條件。
低掠角X光繞射圖譜顯示,在低溫、高工作氣壓、低濺鍍功率及較短的成長時間模式條件下,濺射粒子在玻璃基板表面上沒有足夠能量擴散移動至較佳之結晶點,因此能成長出Al0.02Zn0.98O與Al0.2Zn0.8O之非晶相薄膜。原子力顯微鏡(AFM)量測發現,薄膜表面形貌顯示隨著氣壓上升,表面顆粒易聚集成叢集,反應出基板表面粒子無足夠能量重新排列結構之特性。由於非晶相薄膜之結晶有序性低,故光學能隙變大,因此臨界穿透率有藍位移現象,同時提升短波長之穿透率。由X光近邊緣吸收光譜(XANES)得知Zn1-x-yAlxSnyO薄膜在缺氧的狀況下,摻雜之Sn以四價的形態存於薄膜之中。大量摻入鋁與錫易破壞薄膜晶格結構,使成薄膜可以在室溫下依然呈非晶態。唯本研究之所有非晶態薄膜皆無導電性。
The aim of this project is to find the optimum growth conditions for growing amorphous Zn1-x-yAlxSny (x=0.02 and 0.2) films with various dopents and high transmittance in visible range. By varying substrate temperatures, working pressures, RF powers and growth modes, amorphous Zn1-x-yAlxSny films with high transmittance were successfully grown at low and room temperatures.
Grazing-incident small-angle X-ray diffraction data indicates that low temperature, high working pressure, low RF power and the short deposition period are the key for growing amorphous films in which adatoms on the surface of substrate do not have enough energy for migration and constructing a better crystal structure. As a result of this inadequate energy of adatoms, clusters of grains can be observed on the surface of films by the atomic force microscope. Amorphous Zn1-x-yAlxSny films possess crystalline short range order that opens up the optical and electronic bandgap. In terms of transmittance, a blue shift in the critical transmittance and a higher transmittance in IR range are observed. The high level doping of Al and Sn in ZnO films introduces crystal disordering in films and results in amorphous films even they were grown at room temperature. X-ray absorption near edge spectrum (XANES) discovers that the doped Sn behaves as tetra-valence ions for those Zn1-x-yAlxSny films with high oxygen deficiency. All amorphous films grown in this project exhibits a very low conductivity.
摘要----------------------------------------------------------------------------------I
Abstract -----------------------------------------------------------------------------II
目錄 --------------------------------------------------------------------------------III
表目錄 -----------------------------------------------------------------------------V
圖目錄 -----------------------------------------------------------------------------VI
第一章 緒論 --------------------------------------------- -----------------------1
1-1 實驗簡介與目的 -------------------------------------- ------------------1
第二章 理論 ------------------------------------------------------------------3
2-1 氧化鋅材料性質 -------------------------------------- -----------------3
2-1-1 氧化鋅晶體結構 -----------------------------------------------3
2-1-2 氧化鋅光學性質 -----------------------------------------------4
2-1-3 鋁摻雜效應 -----------------------------------------------------5
2-2 非晶相薄膜導電模型 ---------------------------------- ---------------7
2-3 鋁錫共摻雜效應 ------------------------------------ -------------------9
2-4 非晶相AZO薄膜回顧 ---------------------------------------------10
第三章 儀器介紹與實驗方法 --------------------------------------------13
3-1 射頻磁控濺鍍系統 ---------------------------------- ----------------13
3-1-1 工作原理及功能 ---------------------------------- -------------13
3-1-2 系統構造 --------------------------------------------------------15
3-1-3 低溫射頻磁控濺鍍系統 ----------------------------- ---------18
3-2 量測儀器簡介 -------------------------------------- ------------------20
3-2-1 X光繞射系統 ------------------------------------- --------------20
3-2-2 原子力顯微鏡 --------------------------------------------------22
3-2-3 薄膜光學特性分析 --------------------------------------------24
3-3 實驗製備 --------------------------------------------------------------25
3-3-1 靶材配製 ------------------------------------------------------ 25
3-3-2 基板清洗 --------------------------------------------------------28
3-3-3 薄膜低溫沈積 ----------------- -----------------------------------28
第四章 數據分析與討論 ---------------------------------------------------30
4-1 在低溫製程中尋找成長非晶相薄膜之條件 -------- ------------30
4-1-1 實驗目的 --------------------------------------------------------30
4-1-2 數據整理與分析討論 --------------------- ---------------------31
4-2 調變成長氣壓與電漿功率製成摻鋁2%氧化鋅薄膜-- ---------34
4-2-1 實驗目的 ---------------------------------- ---------------------34
4-2-2 數據整理與分析討論 -----------------------------------------34
4-3 不同成長氣壓與電漿功率下製成Al20%Zn80%O薄膜----------41
4-3-1 實驗目的 -------------------------------------------------------41
4-3-2 數據整理與分析討論 ----------------------------------------41
4-4 室溫製程Al0.2Zn0.8O薄膜摻入Sn效應 ----------------------46
4-4-1 實驗目的 -------------------------------------------------------46
4-4-2 數據整理與分析討論 ----------------------------------------46
4-5 探討薄膜的特性 ----------------------------------------------------51
4-5-1 非晶相薄膜之探討 -------------------------------------------51
4-5-2 薄膜不導電之探討 -------------------------------------------52
第五章 結論 -----------------------------------------------------------------54
參考文獻--------------------------------------------------------------------------55
附錄 -----------------------------------------------------------------------------57

[1] Tadatsugu Minami, Semicond. Sci. Technol. , 20, S35(2005)
[2] K. Ellmer, A. Klein, B. Rech,『Transparent conductive Zinc Oxide』Springer(2007)
[3]Pradipta K Nayak, Jihoon Yang, Jinwoo Kim, Seungjun Chung, Jaewook Jeong, Changhee Lee and Yongtaek Hong, J. Phys. D: Appl. Phys. , 42 0351022009
[4]Kenji Normura, Hiromichi Ohta, Akihiro Takagi , Toshio Kamiya, Masahiro Horano & Hideo Hosono, Nature, Vol. 432, 488-492 (2004)
[5] Materials Science in Semiconductor Processing, 2, 247, (1999)
[6] D. C. Reynolds, C. W. Litton, and T. C. Collins, Phys. Rev, 140, B1726(1965)
[7] B. H. Choi and H. B. Im, Thin Solid Films, vol. 193/194, pp. 712(1990)
[8] E. Burstein, Phys. Rev. , 93, 632-633(1954)
[9] M. Chen, Z. L. Pei, X. Wang , C. Sun and L. S. Wen, J. Vac. Sci. Technol. A, 19, 963-970, ( 2001)
[10] D. Song, A. G. Aberle and J. Xia, Applied Surface Science, 195, 291–296(2002)
[11] I. Hamberg, Phys. Rev. B, 30, 3240(1984)
[12] Haug, Hartmut/ Koch, Stephan W,『Quantum Theory of the Optical and Electronic Properties of Semiconductors』, ISBN:9789812838834
[13] B. Szyszka, Thin Solid Films, 351, 164-169 (1999)
[14] 楊明輝, 『透明導電膜』, 藝軒圖書(2006)
[15] Alex Zunger, Appl. Phys. Lett. , 83, 1(2003)
[16] H. Abdullah, M.N. Norazia, S.Shaari, M.Z. Nuawi, N.S. Mohamed Dan, American J. of Engineering and Applied Sciences, 171-179,(2010)
[17]呂助增,『真空技術與應用』,國家實驗研究院 儀器科技研究中心,2001
[18] 林麗娟 ,X光繞射原理及其應用 ,工業材料86期 ,民國83年2月
[19] 汪建民 ,材料分析, 中國材料科學學會, 2006
[20] 陳哲雄,林俊勳,林紋瑞,吳靖宙 ,原子力顯微鏡成像原理與中文簡易操作手冊, 成功大學醫學工程所生醫感測實驗室
[21] B. Chapman, “Glow Discharge Processes”, John Wiley & Sons. Inc. N.Y.,(1980)
[22] B. D. Cullity and S. R. Stock, “Elements of X-Ray Diffraction” third edition.
[23]X.Q. Meng, W. Zhen, J.P.Guo, X.J. Fan, Appl. Phys. A, 70, 421–424 (2000)
[24]邱昭文, 高雄大學應用物理系, 於國家同步輻射研究中心(NSRRC)量測(2010)
[25]楊孟璇, 國立中山大學物理學系研究所, 九十八年碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔