跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊雄
研究生(外文):Chun-Hsiung Wang
論文名稱:外殼蛋白之N端與雙硫鍵影響石斑神經壞死病毒顆粒組裝及熱穩定性之研究
論文名稱(外文):The Effects of N-terminus and Disulfide Bonds of Capsid Protein on Particle Formation and Thermal Stability of Grouper Nervous Necrosis Virus
指導教授:林全信林全信引用關係
指導教授(外文):Chan-Shing Lin
學位類別:博士
校院名稱:國立中山大學
系所名稱:海洋生物科技暨資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:303
中文關鍵詞:熱穩定性顆粒組裝似病毒顆粒石斑神經壞死病毒雙硫鍵外殼蛋白
外文關鍵詞:thermal stabilityassemblyvirus like particlecapsid proteindisulfide bondgrouper nervous necrosis virus
相關次數:
  • 被引用被引用:3
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
石斑神經壞死病毒 (grouper nervous necrosis viruses) 可以感染多種經濟魚類的仔魚及稚魚,且致死率最高達 100%,造成養殖漁業極大的損失。本研究以龍膽石斑神經壞死病毒 (DGNNV) 似病毒顆粒 (VLPs) 為材料,分析外殼蛋白之 N 端與雙硫鍵對病毒顆粒組裝及熱穩定性之影響,並利用冷凍電子顯微鏡來解析似病毒顆粒之結構。
當外殼蛋白之 N 端截短 35 個胺基酸後,截短之外殼蛋白失去組裝之能力,而當截短 4、16、25 個胺基酸時,則可組裝為似病毒顆粒。進一步利用點突變的方式,來探討外殼蛋白序列 N 端對病毒顆粒組裝與熱穩定性之影響,結果顯示,雖然所有突變株皆可形成似病毒顆粒,但其相對產量與熱穩定性隨著 Arg 突變數目之增加而降低。當截去 25 個 N 端之外殼蛋白胺基酸時,ΔN25-R29A VLP 與 ΔN25 VLP 在顆粒形成與熱穩定性上,具有相同之特性,因此,Arg29 之突變並不會影響似病毒顆粒的形成及熱穩定性。在單點突變株中,ΔN25-R30A 與 ΔN25-R31A 似病毒顆粒之相對產量與熱穩定性皆低於 ΔN25-R29A 之似病毒顆粒,表示 Arg30 與 Arg 31 對病毒顆粒之形成以及結構穩定性上的維持較重要。當 N 端減少 12 個正電荷胺基酸時 (△N25-R293031A),似病毒顆粒之產率降低至 1.2 ± 0.9%。
在雙硫鍵之研究中,利用還原劑 β-mercaptoethanol 與點突變來探討雙硫鍵對病毒顆粒組裝之與熱穩定性之影響。在 C187A、C331A 與 C187A/C331A 突變株中皆可形成似病毒顆粒,其大小、外觀與野生型似病毒顆粒相似,而 Cys115 與 Cys201 之點突變卻使外殼蛋白喪失組裝之能力。所有可形成似病毒顆粒之外殼蛋白,皆可拆裝與再組裝,且再組裝率約為 98%。失去雙硫鍵之似病毒顆粒,雖仍可維持其二十面體之結構,但其熱穩定性卻下降了,僅能忍受高溫至 70°C,而失去雙硫鍵之殼粒則無法組裝成病毒顆粒。因此,Cys115-Cys201 分子內雙硫鍵對病毒外殼蛋白次單元之折疊與病毒結構穩定性之維持十分重要。
利用冷凍電子顯微鏡 (Cryo-electron microscopy;Cryo-EM) 技術來觀察未截短 (WT-VLP) 與 N 端截短 25 個氨基酸之似病毒顆粒(ΔN25-VLP),結果顯示兩者十分相似,直徑約為 380 Å,具有 T = 3 擬等價晶格之外觀。在其結構中可觀察到突出單元 (protrusion domain,介於 ~154-192 Å)、殼層單元 (shell domain,介於 ~112-154 Å) 與殼內之 RNA (<112 Å)。而每一突出單元 (protrusion domain) 由三個次單元所組成,且依環境之不同,此三個次單元亦有不同的交互作用。N 端 25 個氨基酸的截短並不會影響似病毒顆粒的組裝,且結構與 WT-VLP 相似。藉由 Fourier shell correlation 的方式計算出結構之解析度,得知 WT-VLP 之解析度為 6.5 Å,而 ΔN25-VLP 之解析度為 11.8 Å。

Grouper nervous necrosis viruses belong to the Betanodavirus genus in the Nodaviridae family that is a group of small, non-enveloped icosahedron viruses. More than 30 species of fish are infected by the betanodaviruses, which cause massive mortality in hatchery-reared larvae and juveniles. The infection causes great economic losses to aquaculture and sea-ranching. To study the effects of N-terminus and disulfide bonds of capsid protein on particle formation and thermal stability of grouper nervous necrosis virus, virus-like particles (VLPs) of dragon grouper nervous necrosis virus (DGNNV) were used.

Deletion of 35 residues at the N-terminus completely ruined the VLP assembly. When deletions were restricted to 4, 16, or 25 N-terminal residues, the assembly of VLPs remained. Site-directed mutagenesis was used to investigate the effects of N-terminus of capsid protein on particle formation and thermal stability of grouper nervous necrosis virus. Althought all arginine mutants could produce VLPs, the relative amounts and thermal stabilities of arginine-mutated VLPs were decrease. The VLPs from ΔN25-R29A and ΔN25 mutants have similar structural properties on particle formation and thermal stability. Therefore, the effects of Arg29 mutations are negligible. The relative amounts and thermal stabilities of VLPs from ΔN25-R30A and ΔN25-R31A mutants are lower than ΔN25-R29A VLP. When 25 amino acids at N-terminus of DGNNV capsid protein were removed, Arg30 and Arg31 are important for particle formation and particel stability. Although particle could form as 12 positively charged amino acids were lost (△N25-R293031A), the efficiency of particles assembly were decrease to 1.2 ± 0.9% as compare to wild-type VLPs (WT-VLPs).

Site-directed mutagenesis and chemical reducing reagents were used to investigate the roles of disulfide bonds in particle formation and thermal stability of grouper nervous necrosis virus. The homogeneous particles from C187A, C331A and C187A/C331A mutants are indistinguishable from the native virus and WT-VLPs in their sizes and shapes. C115A and C201A mutants could not produce VLPs. The dissociated capsomers from arginine- or cysteine-mutant VLPs all can be reassembled to icosahedrons with efficiencies as high as 100%. When VLP particles are pre-fabricated, the reducing agent cannot disrupt the VLP icosahedron structure. The thiol reduction only caused effects on the disulfide linkages inside the icosahedrons. β-mercaptoethanol-treated WT-VLPs could not tolerate the thermal effects at a temperature higher than 70°C. Once the disulfide linkages in dissociated capsomers were entirely disrupted by β-mercaptoethanol treatment, the resulting capsomers could not reassemble back to icosahedron particles.These results indicated that Cys115 and Cys201 were essential for capsid formation of DGNNV icosahedron structure in de novo assembly and reassembly pathways, as well as for the thermal stability of pre-fabricated particles.

In the observation of Cryo-EM, the shapes and sizes of the N-terminus truncated particle (ΔN25-VLP) are indistinct from the full-length particle (WT-VLP). The maximum diameter of DGNNV is approximately 380 Å. Like that of the insect nodaviruses, the surface morphologies of ΔN25-VLP and WT-VLP are consistent with a T = 3 quasi-equivalent lattice. The protrusions (~154 to 192 Å), the inner shell of the capsid (~112 to 154 Å), and the RNA (<112 Å) were observed in the DGNNV structure. The protrusion domain is consisting of three capsid subunits, and the interactions between these subunits are different. Deletion of 25 residues at the N-terminus did not affect VLPs formation and the structure of ΔN25-VLP is similar to WT-VLPs. Resolutions was calculated by Fourier shell correlation, and the resolution of WT-VLPs and ΔN25-VLPs is 6.5Å and 11.8Å, respectively.

摘要-------------------------------------------------------------------------------------------- I
Abstract---------------------------------------------------------------------------------------- III
目錄-------------------------------------------------------------------------------------------- V
表目錄----------------------------------------------------------------------------------------- X
圖目錄----------------------------------------------------------------------------------------- XI
壹、緒論--------------------------------------------------------------------------------------- 1
貳、文獻回顧--------------------------------------------------------------------------------- 3
一、Betanodavirus 的起源----------------------------------------------------------- 3
二、受到 betanodavirus 感染的魚種及其地理分布---------------------------- 5
三、Betanodavirus 之序列與分類-------------------------------------------------- 8
四、Betanodavirus 的分子生物學-------------------------------------------------- 9
五、感染 betanodavirus 之症狀---------------------------------------------------- 10
六、偵測 betanodavirus 的方式---------------------------------------------------- 10
七、增殖 betanodavirus 之細胞株------------------------------------------------- 13
八、Betanodavirus 的傳染性-------------------------------------------------------- 17
九、發展中之疫苗-------------------------------------------------------------------- 20
十、Betanodavirus 的結構及其穩定性-------------------------------------------- 22
參、外殼蛋白之 N 端影響石斑神經壞死病毒顆粒組裝及熱穩定性------------- 24
一、前言--------------------------------------------------------------------------------- 24
二、材料與方法------------------------------------------------------------------------ 29
1. SSN-1 細胞之繼代--------------------------------------------------------- 29
2. SSN-1 細胞之保存與活化------------------------------------------------ 30
3. 以 SSN-1 細胞增殖 DGNNV------------------------------------------ 31
4. 純化 DGNNV-------------------------------------------------------------- 31
5. 大腸桿菌表現 DGNNV 之外殼蛋白---------------------------------- 32
6. DGNNV 似病毒顆粒之純化 (氯化銫梯度離心法)----------------- 33
7. DGNNV 似病毒顆粒之純化 (蔗糖梯度離心法)-------------------- 35
8. 連續式分光光度計分析-------------------------------------------------- 36
9. 蛋白質定量 (Lowry 法)------------------------------------------------- 37
10. 蛋白質電泳----------------------------------------------------------------- 38
11. 抗VLP 之小鼠血清製備-------------------------------------------------- 39
12. 西方墨點法 (Western blotting) ----------------------------------------- 40
13. 質體的抽取----------------------------------------------------------------- 41
14. DNA 電泳------------------------------------------------------------------- 41
15. 純化膠體中之 DNA------------------------------------------------------ 42
16. 勝任細胞 (competent cell) 的製作------------------------------------- 43
17. 細胞轉型-------------------------------------------------------------------- 43
18. N 端 arginine 突變株之選殖-------------------------------------------- 44
19. 電子顯微鏡負染色樣品之製備與觀察-------------------------------- 44
20. N 端 arginine 突變株似病毒顆粒之純化與分析-------------------- 45
21. N 端 arginine 突變株似病毒顆粒之熱穩定性分析----------------- 45
22. N 端 arginine 突變株似病毒顆粒之拆裝與再組裝----------------- 45
三、結果--------------------------------------------------------------------------------- 47
1. DGNNV 之增殖與純化--------------------------------------------------- 47
2. DGNNV 似病毒顆粒之純化--------------------------------------------- 48
3. DGNNV 與其似病毒顆粒之結構的相似性--------------------------- 51
4. 外殼蛋白之 N 端富含正電荷之胺基酸------------------------------ 52
5. 外殼蛋白 N 端之截短影響似病毒顆粒的形成--------------------- 53
6. 外殼蛋白 N 端之正電荷氨基酸點突變選殖株--------------------- 54
7. N 端 arginine 突變株生產似病毒顆粒之能力分析----------------- 56
8. N 端 arginine 突變株似病毒顆粒之相對產量分析----------------- 61
9. N 端 arginine 突變株似病毒顆粒之熱穩定性分析----------------- 62
10. N 端 arginine 突變株似病毒顆粒之拆裝與再組裝----------------- 67
四、討論--------------------------------------------------------------------------------- 72
1. DGNNV 之增殖------------------------------------------------------------ 72
2. 似病毒顆粒之純化-------------------------------------------------------- 73
3. DGNNV 與其似病毒顆粒之結構十分相近--------------------------- 75
4. 外殼蛋白之 N 端正電荷胺基酸影響似病毒顆粒的形成--------- 76
5. N 端 arginine 突變株似病毒顆粒之熱穩定性----------------------- 80
6. N 端 arginine 突變株似病毒顆粒之拆裝與再組裝----------------- 82
肆、外殼蛋白之雙硫鍵影響石斑神經壞死病毒顆粒組裝及熱穩定性------------ 83
一、前言--------------------------------------------------------------------------------- 83
二、材料與方法------------------------------------------------------------------------ 89
1. 似病毒顆粒中之雙硫鍵分析 (非還原性電泳)----------------------- 89
2. 還原劑 β-mercaptoethanol 對似病毒顆粒之影響------------------- 90
3. Cysteine 突變株之選殖--------------------------------------------------- 91
4. Cysteine 突變株似病毒顆粒之純化與分析--------------------------- 92
5. Cysteine 突變株似病毒顆粒之熱穩定性分析------------------------ 92
6. Cysteine 突變株似病毒顆粒之拆裝與再組裝------------------------ 92
三、結果--------------------------------------------------------------------------------- 93
1. 病毒外殼蛋白中之 cysteine 的保守性分析-------------------------- 93
2. 似病毒顆粒中之雙硫鍵-------------------------------------------------- 94
3. 雙硫鍵對似病毒顆粒的影響-------------------------------------------- 95
4. 外殼蛋白 cysteine 胺基酸點突變選殖株----------------------------- 96
5. Cysteine 突變株生產似病毒顆粒之能力分析------------------------ 98
6. Cysteine 突變株似病毒顆粒之相對產量分析------------------------ 101
7. 雙硫鍵之還原影響野生型似病毒顆粒之熱穩定性----------------- 102
8. Cysteine 突變株似病毒顆粒之熱穩定性分析------------------------ 103
9. 雙硫鍵之還原影響野生型似病毒顆粒之再組裝-------------------- 106
10. Cysteine突變株似病毒顆粒之拆裝與再組裝-------------------------- 107
四、討論--------------------------------------------------------------------------------- 109
1. Betanodavirus 外殼蛋白中 cysteine 之保守性---------------------- 109
2. DGNNV 病毒顆粒中之分子內雙硫鍵--------------------------------- 109
3. DGNNV 外殼蛋白中 Cys115 與 Cys201 形成分子內雙硫鍵--- 110
4. 雙硫鍵之還原會降低似病毒顆粒之熱穩定性----------------------- 112
5. 缺乏雙硫鍵之外殼蛋白次單元無法組裝為似病毒顆粒----------- 114
伍、DGNNV 之冷凍電子顯微結構------------------------------------------------------ 115
一、前言--------------------------------------------------------------------------------- 115
二、材料與方法------------------------------------------------------------------------ 120
1. 電子顯微鏡深染色 (deep stain) 樣品之製備與觀察--------------- 120
2. 電子顯微鏡冷凍樣品 (cryo sample) 樣品之製備與觀察---------- 120
3. 三維立體影像重組之參考影像資料庫-------------------------------- 121
4. 方位角之搜尋與立體結構之重建-------------------------------------- 122
5. 重組立體模型解析度之推算-------------------------------------------- 123
三、結果--------------------------------------------------------------------------------- 125
1. 冷凍電子顯微影像重組-------------------------------------------------- 125
2. DGNNV 似病毒顆粒之冷凍電子顯微結構--------------------------- 126
3. 各個次單元間的交互作用----------------------------------------------- 127
4. 染色法 (negative stain 與 deep stain) 之比較----------------------- 128
四、討論--------------------------------------------------------------------------------- 129
1. DGNNV 似病毒顆粒之冷凍電子顯微影像--------------------------- 129
2. 立體影像重組之指標----------------------------------------------------- 130
3. DGNNV 似病毒顆粒之冷凍電子顯微結構--------------------------- 132
陸、結論--------------------------------------------------------------------------------------- 134
柒、參考文獻--------------------------------------------------------------------------------- 136
捌、圖表-------------------------------------------------------------------------------------- 156
玖、附錄-------------------------------------------------------------------------------------- 268
附錄A、立體影像重組之流程------------------------------------------------------ 268
Fig. A1 The icosahedron structure with 532 point group symmetry.----- 268
Fig. A2 The structure of Nodamura Virus, an alphanodavirus.------------ 269
Fig. A3 Icosahedral particle orientation specification.---------------------- 270
Fig. A4 Any view vector can be referenced to one asymmetric unit
within an icosahedron structure.-----------------------------------------------
271
Fig. A5 Change in projected structure with change in view orientation.- 272
Fig. A6 Schematic representation of generation of PFT data for model
and raw image data.-------------------------------------------------------------
273
Fig. A7 Schematic diagram of EMPFT procedure.------------------------- 274
附錄B、個人著作-------------------------------------------------------------------- 275
Aranguren R, Tafalla C, Novoa B, Figueras A. (2002) Nodavirus replication in a turbot cell line. J Fish Dis. 25: 361-366.

Arimoto M, Mushiake K, Mizuta Y, Muroga K, Furusawa I. (1992) Detection of striped jack nervous necrosis virus (SJNNV) by enzyme-linked immunosorbent assay (ELISA). Fish Pathol. 27: 191-195.

Arimoto M, Sato J, Maruyama K, Mimura G. Furusuwa I. (1996) Effect of chemical and physical treatments on the inactivation of striped jack nervous necrosis virus (SJNNV). Aquaculture. 143: 15-22.

Baker TS, Drak J, Bina M. (1988) Reconstruction of the three-dimensional structure of simian virus 40 and visualization of the chromatin core. Proc Natl Acad Sci U S A. 85: 422-426.

Baker TS, Drak J, Bina M. (1989) The capsid of small papova viruses contains 72 pentameric capsomeres: direct evidence from cryo-electron-microscopy of simian virus 40. Biophys J. 55: 243-253.

Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC. (1991) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J. 60: 1445-1456.
Bancroft JB. (1970) The self-assembly of spherical plant viruses. Advan Virus Res. 16: 99-134.

Bhuvaneshwari M, Subramanya HS, Gopinath K, Savithri HS, Nayudu MV, Murthy MR. (1995) Structure of sesbania mosaic virus at 3 Å resolution. Structure. 3: 1021-1030.

Bloch B, Gravningen K, Larsen JL. (1991) Encephalomyelitis among turbot associated with a picornavirus-like agent. Dis Aquat Organ. 10: 65-70.

Bondad-Reantaso MG, Kanchanakhan S, Chinabut S. (2000) Review of grouper diseases and health management strategies for grouper and marine finfishes diseases. In: APECFWG02/2000 Workshop. Development of a Regional Research Program on Grouper Virus Transmission and Vaccine Development, Bangkok, 18-20 October 2000, pp. 27-60.

Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, Montesi F, De Mas S. (1999) Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res. 63: 143-146.

Braakman I, Helenius J, Helenius A. (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11: 1717-1722.

Brady JN, Kendall JD, Consigli RA. (1979) In vitro reassembly of infectious polyoma virions. J Virol. 32: 640-647.
Brady JN, Winston VD, Consigli RA. (1977) Dissociation of polyoma virus by the chelation of calcium ions found associated with purified virions. J Virol. 23: 717-724.

Brady JN, Winston VD, Consigli RA. (1978) Characterization of a DNA-protein complex and capsomere subunits derived from polyoma virus by treatment with ethyleneglycol-bis-N,N’-tetraacetic acid and dithiothreitol. J Virol. 27: 193-204.

Breuil G, Bonami JR, Pepin JF, Pichot Y. (1991) Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea bass (Dicentrarchus labrax) larvae and juveniles. Aquaculture. 97: 109-116.

Breuil G, Pepin JF, Castric J, Fauvel C, Thiery R. (2000) Detection of serum antibodies against nodavirus in wild and farmed adult sea bass: application to the screening of broodstock in sea bass hatcheries. Bull Eur Associa of Fish Pathol. 20: 95-100.

Breuil G, Romestand B. (1999) A rapid ELISA method for detecting specific antibody level against nodavirus in the serum of sea bass, Dicentrarchus labrax (L.), application to the screening of spawners in a sea bass hatchery. J Fish Dis. 22: 45-52.

Butcher SJ, Dokland T, Ojala PM, Bamford DH, Fuller SD. (1997) Intermediates in the assembly pathway of the double-stranded RNA virus phi6. EMBO J. 16: 4477-4487.
Caspar D. (1963) Assembly and stability of the tobacco mosaic virus particle. Advan Protein Chem. 18: 37-121.

Cha SJ, Do JW, Lee NS, An EJ, Kim YC, Kim JW, Park JW. (2007) Phylogenetic analysis of betanodaviruses isolated from cultured fish in Korea. Dis Aquat Org. 77: 181-189.

Chang S, Ngoh GH, Kueh LFS, Qin QW, Chen CL, Lam TJ, Sin YM. (2001) Development of a Tropical Marine Fish Cell-Line from Asian Sea-Bass (Lates-Calcarifer) for Virus Isolation. Aquaculture. 192: 133-145.

Che Z, Olson NH, Leippe D, Lee WM, Mosser AG, Rueckert RR, Baker TS, Smith TJ. (1998) Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes. J Virol. 72: 4610-4622.

Chen PL, Wang M, Ou CW, Lii CK, Chen LS, Chang D. (2001) Disulfide bonds stabilize JC virus capsid-like structure by protecting calcium ions from chelation. FEBS Lett. 500: 109-113.

Chen R, Neill JD, Estes MK, Prasad BV. (2006) X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A. 103: 8048-8053.

Chi SC, Hu WW, Lo BJ. (1999) Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis. 22: 173-182.

Chi SC, Lo CF, Kou GH, Chang, PS, Peng SE, & Chen SN. (1997) Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J Fish Dis. 20: 185-193.

Chi SC, Lo CF, Lin SC. (2001) Characterization of grouper nervous necrosis virus. J Fish Dis. 24: 3-13.

Chi SC, Shieh JR, Lin SJ. (2003) Genetic and antigenic analysis of betanodaviruses isolated from aquatic organisms in Taiwan. Dis Aquat Organ. 55: 221-228.

Comps M, Trindade M, Delsert C. (1996) Investigation of fish encephalitis viruses (FEV) expression in marine fishes using DIG-labelled probes. Aquaculture. 143: 113-121.

Curtis PA, Drawbridge M, Iwamoto T, Nakai T, Hedrick RP, Gendron AP. (2001) Nodavirus infection of juvenile white seabass, Atractoscion nobilis, cultured in southern California, first record of viral nervous necrosis (VNN) in North America. J Fish Dis. 24: 263-271.

Dalla Valle L, Zanella L, Patarnello P, Paolucci L, Belvedere P, Colombo L. (2000) Development of a sensitine diagnostic assay for fish nervous necrosis virus based on RT-PCR plus nested PCR. J Fish Dis. 23: 321-327.

Dannevig BH, Nilsen R, Modahl I, Jankowska M, Taksdal T, Press CM. (2000) Isolation in cell culture of nodavirus from farmed Atlantic halibut Hippoglossus hippoglossus in Norway. Dis Aquat Organ. 43: 183-189.

Delsert C, Morin N, Comps M. (1997) Fish nodavirus lytic cycle and semipermissive expression in mammalian and fish cell cultures. J Virol. 71: 5673-5677.

Doms RW, Lamb RA, Rose JK, Helenius A. (1993) Folding and assembly of viral membrane proteins. Virology. 193: 545-562.

Dong XF, Natarajan P, Tihova M, Johnson JE, Schneemann A. (1998) Particle polymorphism caused by deletion of a peptide molecular switch in a quasi-equivalent virus. J Virol. 72: 6024-6033.

Erarslan A, Koçer H. (1992) Thermal inactivation kinetics of penicillin G acylase obtained from a mutant derivative of Escherichia coli ATCC 11105. J Chem Technol Biotechnol. 55: 79-84.

Fisher AJ, McKinney BR, Schneemann A, Rueckert RR, Johnson JE. (1993) Crystallization of viruslike particles assembled from flock house virus coat protein expressed in a baculovirus system. J Virol. 67: 2950-2953.

Frerichs GN, Rodger HD, Peric Z. (1996) Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. J Gen Virol. 77: 2067-2071.

Fukuda Y, Nguyen HD, Furuhashi M, Nakai T. (1996) Mass mortality of cultured sevenband grouper, Epinephelus septemfasciatus, associated with viral nervous necrosis. Fish Pathol. 31: 165-170.

Fuller SD, Butcher SJ, Cheng RH, Baker TS. (1996) Three-dimensional reconstruction of icosahedral particles--the uncommon line. J Struct Biol. 116: 48-55.

Glazebrook JS, Heasman MP, De Beer SW. (1990) Picorna-like viral particles associated with mass mortalities in larval barramundi, Lates calcarifer (Bloch). J Fish Dis. 13: 245-249.

Gomez DK, Baeck GW, Kim JH, Choresca CH Jr, Park SC. (2008) Genetic analysis of betanodaviruses in subclinically infected aquarium fish and invertebrates. Curr Microbiol. 56: 499-504.

Gomez DK, Mori K, Okinaka Y, Nakai T, Park SC. (2010) Trash fish can be a source of betanodaviruses for cultured marine fish. Aquaculture. 302: 158-163.


Grotmol S, Bergh Ø, Totland GK. (1999) Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organa and a possible route of infection. Dis Aquat Organ. 36: 95-106.

Grotmol S, Totland GK, Torud K, Hjeltnes BK. (1997) Vacuolating encephalopathy and retinopathy associated with a nodavirus-like agent: a probable cause of mass mortality of culture larval and juvenile Atlantic halibut Hippoglossus hippoglossus. Dis Aquat Organ. 29: 85-97.

Harauz G and van Heel M. (1986) Exact filters for general geometry three dimensional reconstruction. Optik. 73: 146-156.

Huang B, Tan C, Chang SF, Munday B, Mathew JA, Ngoh GH, Kwang J. (2001) Detection of nodavirus in barramundi, Lates calcarifer (Bloch), using recombinant coat protein-based ELISA and RT-PCR. J Fish Dis. 24: 135-141.

Ishizu KI, Watanabe H, Han SI, Kanesashi SN, Hoque M, Yajima H, Kataoka K, Handa H. (2001) Roles of disulfide linkage and calcium ion-mediated interactions in assembly and disassembly of virus-like particles composed of simian virus 40 VP1 capsid protein. J Virol. 75: 61-72.

Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T. (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol. 86: 2807-2816.

Iwamoto T, Mori K, Arimoto M, Nakai T. (1999) High permissivity of the fish cell line SSN-1 for piscine nodavirus. Dis Aquat Organ. 39: 37-47.

Iwamoto T, Nakai T, Mori K, Arimoto M, Furusawa I. (2000) Cloning of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Organ. 43: 81-89.

Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T. (2004) Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol. 78: 1256-1262.

Johnson KN, Tang L, Johnson JE, Ball LA. (2004) Heterologous RNA encapsidated in Pariacoto virus-like particles forms a dodecahedral cage similar to genomic RNA in wild-type virions. J Virol. 78: 11371-11378.

Kai YH, Chi SC. (2008) Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization. Vaccine. 26: 1450-1457.

Krondiris JV, Sideris DC. (2002) Intramolecular disulfide bonding is essential for betanodavirus coat protein conformation. J Gen Virol. 83: 2211-2214.

Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 108: 717-725.

Lai YS, Chiu HC, Murali S, Guo IC, Chen SC, Fang K, Chang CY. (2001) In vitro neutralization by monoclonal antibodies against yellow grouper nervous necrosis virus (YGNNV) and immunolocalization of virus infection in yellow grouper, Epinephelus awoara (Temminck and Schlegel). J Fish Dis. 24: 237-244

Lai YS, Chiu HC, Murali S, Guo IC, Chen SC, Fang K, Chang CY. (2001) In vitro neutralization by monoclonal antibodies against yellow grouper nervous necrosis virus (YGNNV) and immunolocalization of virus infection in yellow grouper, Epinephelus awoara (Temminck and Schlegel). J Fish Dis. 24: 237-244.

Lai YS, John JA, Guo IC, Chen SC, Fang K, Chang CY. (2002) In vitro efficiency of intra- and extracellular immunization with mouse anti-YGNNV antibody against yellow grouper nervous necrosis virus. Vaccine. 20: 3221-3229.

Le Breton A, Grisez L, Sweetman J, Ollevier F. (1997) Viral nervous necrosis (VNN) associated with mass mortalities in caged-reared sea bass Dicentrarchus labrax L. J Fish Dis. 20: 145-151.

Lee KW, Chi SC, Cheng TM. (2002) Interference of the life cycle of fish nodavirus with fish retrovirus. J Gen Virol. 83: 2469-2474.

Lin CS, Lu MW, Tang L, Liu W, Chao CB, Lin CJ, Krishna NK, Johnson JE, Schneemann A. (2001) Characterization of virus-like particles assembled in a recombinant baculovirus system expressing the capsid protein of a fish nodavirus. Virology. 290: 50-58.

Liu W, Hsu CH, Chang CY, Chen HH, Lin CS. (2006) Immune response against grouper nervous necrosis virus by vaccination of virus-like particles. Vaccine. 24: 6282-6287.

Liu W, Hsu CH, Hong YR, Wu SC, Wang CH, Wu YM, Chao CB, Lin CS. (2005) Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus. J Gen Virol. 86: 2553-2561.

Lu MW, Lin CS. (2003) Involvement of the terminus of grouper betanodavirus capsid protein in virus-like particle assembly. Arch Virol. 148: 345-355.

Lu MW, Liu W, Lin CS. (2003) Infection competition against grouper nervous necrosis virus by virus-like particles produced in Escherichia coli. J Gen Virol. 84: 1577-1582.
Marshall D, Schneemann A. (2001) Specific packaging of nodaviral RNA2 requires the N-terminus of the capsid protein. Virology. 285: 165-175.

Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. (2004) Molecular architecture of bacteriophage T4. Biochemistry (Mosc). 69: 1190-1202.

Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I. (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology. 187: 368-371.

Mori K, Nakai T, Nagahara M, Muroga K, Mekuchi T, Kanno T. (1991) A viral disease in hatchery-reared larvae and juveniles of redspotted grouper. Fish Pathol. 26: 209-210.

Morit K, Mangyoku T, Iwamoto T, Arimoto M, Tanaka S, Nakai T. (2003) Serological relationships among genotypic variants of betanodavirus. Dis Aquat Organ. 57: 19-26.

Mulvey M, Brown DT. (1994) Formation and rearrangement of disulfide bonds during maturation of the Sindbis virus E1 glycoprotein. J Virol. 68: 805-812.

Munday BL, Kwang J, Moody N. (2002) Betanodavirus infections of teleost fish: a review. J Fish Dis. 25: 127-142.

Munday BL, Langdon JS, Hyatt A, Humphrey JD. (1992) Mass mortality associated with a viral-induced vacuolating encephalopathy and retinopathy of larvae and juvenile barramundi, Lates calcarifer Bloch. Aquaculture. 103: 197-211.

Munday BL, Nakai T, Nguyen HD. (1994) Antigenic relationship of the picorna-like virus of larval barramundi, Lates calcarifer Bloch to the nodavirus of larval striped jack, Pseudocaranx dentex (Bloch & Schneider). Aust Vet J. 71: 384-385.

Munday BL, Nakai T. (1997) Special topic review: nodaviruses as pathogens in larval and juvenile marine finfish. World J Microbiol Biotechnol. 13: 375-381

Muroga K. (1995) Viral and bacterial diseases in larval and juvenile marine fish and shellfish: a review. Fish Pathol. 30: 71-85.

Mushiake K, Arimoto M, Furusawa T, Furusawa I, Nakai T, Muroga K. (1992) Detection of antibodies against striped jack nervous necrosis virus (SJNNV) from brood stocks of striped jack. Nippon Suisan Gakk. 58: 2351-2356.

Nakai T, Nguyen HD, Nishizawa T, Muroga KM, Ootsuki K. (1994) Occurrence of viral nervous necrosis in kelp grouper and tiger puffer. Fish Pathol. 29: 211-212.

Nam HJ, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E, Aslanidi G, Byrne B, Muzyczka N, Zolotukhin S, Agbandje-McKenna M. (2007) Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol. 81: 12260-12271.

Ng SC, Bina M. (1981) Disulfide bonds protect the encapsidated chromosomes of Simian virus 40. FEBS Lett. 130: 47-49.

Nguyen HD, Mekuchi T, Imura K, Nakai T, Nishizawa T, Muroga K. (1994) Occurrence of viral nervous necrosis (VNN) in hatchery-reared juvenile Japanese flounder Paralichthys olivaceus. Fisheries Sci. 60: 551-554.

Nguyen HD, Nakai T, Muroga K. (1996) Progression of striped jack nervous necrosis virus (SJNNV) infection in naturally and experimentally infected striped jack Pseudocaranx dentex larvae. Dis Aquat Org. 24: 99-105.

Nishizawa T, Furuhashi M, Nagai T, Nakai T, Muroga K. (1997) Genomic classfication of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol. 63: 1633-1636.

Nishizawa T, Kise M, Nakai T, Muroga K. (1995a) Neutralizing monoclonal antibodies to striped jack nervous necrosis virus (SJNNV). Fish Pathol. 30: 111-114.

Nishizawa T, Mori K, Furuhashi M, Nakai T, Furusawa I, Muroga K. (1995b) Comparsion of the coat protein genes of five fish nodaviruses, the causative agent of viral nervous necrosis in marine fish. J Gen Virol. 76: 1563-1569.

Nishizawa T, Mori K, Nakai T, Furusawa I, Muroga K. (1994) Polymerase chain reaction (PCR) amplification of RNA of striped jack nervous necrosis virus (SJNNV). Dis Aquat Org. 18: 103-107.

Office International des Epizooties. (2000). Viral encephalopathy and retinopathy. In OIE Diagnostic Manual for Aquatic Animal Diseases 3rd edn., pp, 69-73. Paris: OIE.

Paintsil J, Muller M, Picken M, Gissmann L, Zhou J. (1998) Calcium is required in reassembly of bovine papillomavirus in vitro. J Gen Virol. 79: 1133-1141.

Pakingking R Jr, Seron R, dela Peña L, Mori K, Yamashita H, Nakai T. (2009) Immune responses of Asian sea bass, Lates calcarifer Bloch, against an inactivated betanodavirus vaccine. J Fish Dis. 32: 457-463.

Parameswaran V, Shukla R, Bhonde R, Hameed AS. (2006) Establishment of embryonic cell line from sea bass (Lates calcarifer) for virus isolation. J Virol Methods. 137: 309-316.

Qin QW, Wu TH, Jia TL, Hegde A, Zhang RQ. (2006) Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. J Virol Methods. 131: 58-64.

Reinisch KM, Nibert ML, Harrison SC. (2000) Structure of the reovirus core at 3.6 A resolution. Nature. 404: 960-967.

Renault T, Haffner P, Baudin Laurencin F, Breuil G, Bonami JR. (1991) Mass mortalities in hatchery-reared sea bass (Lates calcarifer) larval associated with the presence in the brain and retina of virus-like particles. Bull Eur Associa of Fish Pathol. 11: 68-73.

Romestand B, Bonami JR. (2003) A sandwich enzyme linked immunosorbent assay (S-ELISA) for detection of MrNV in the giant freshwater prawn, Macrobrachium rosenbergii (de Man). J Fish Dis. 26: 71-75.

Rümenapf T, Brown DT, Strauss EG, König M, Rameriz-Mitchel R, Strauss JH. (1995) Aura alphavirus subgenomic RNA is packaged into virions of two sizes. J Virol. 69: 1741-1746.

Rümenapf T, Strauss EG, Strauss JH. (1994) Subgenomic mRNA of Aura alphavirus is packaged into virions. J Virol. 68: 56-62.

Satheshkumar PS, Lokesh GL, Sangita V, Saravanan V, Vijay CS, Murthy MRN, Savithri HS. (2004) Role of metal ion-mediated interactions in the assembly and stability of Sesbania mosaic virus T = 3 and T = 1 capsids. J Mol Biol. 342: 1001-1014.

Schneemann A, Dasgupta R, Johnson JE, Rueckert RR. (1993) Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. J Virol. 67: 2756-2763.

Schneemann A, Marshall D. (1998) Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha. J Virol. 72: 8738-8746.

Schneemann A. (2006) The structural and functional role of RNA in icosahedral virus assembly. Annu Rev Microbiol. 60: 51-67.

Skliris GP, Krondiris JV, Sideris DC, Shinn AP, Starkey WG, Richards RH. (2001) Phylogenetic and antigenic characterization of new fish nodavirus isolates from Europe and Asia. Virus Res. 75: 59-67.

Sohn SG, Park MA. (1998) Viral diseases of cultured marine fish and shrimp in Korea. Fish Pathol. 33: 189-192.

Starkey WG, Ireland JH, Muir KF, Shinn AP, Richards RH, Ferguson HW. (2000) Isolation of nodavirus from Scottish farmed halibut, Hippoglossus hippoglossus (L). J Fish Dis. 23: 419-422.

Stehle T, Gamblin SJ, Yan Y, Harrison SC. (1996) The structure of simian virus 40 refined at 3.1 Å resolution. Structure. 4: 165-182.

Stubbs G. (1999) Tobacco mosaic virus particle structure and the initiation of disassembly. Philos Trans R Soc Lond B Biol Sci. 354: 551-557.

Tanaka S, Aoki H, Nakai T. (1998) Pathogenicity of the nodavirus detected from diseased sevenband grouper Epinephelus septemfasciatus. Fish Pathol. 33: 31-36.

Tang L, Johnson KN, Ball LA, Lin T, Yeager M, Johnson JE. (2001) The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. Nat Struct Biol. 8: 77-83.

Tang L, Lin CS, Krishna NK, Yeager M, Schneemann A, Johnson JE. (2002) Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol. 76: 6370-6375.

Thiéry R, Cozien J, de Boisséson C, Kerbart-Boscher S, Névarez L. (2004) Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. J Gen Virol. 85: 3079-3087.

Tihova M, Dryden KA, Le TV, Harvey SC, Johnson JE, Yeager M, Schneemann A. (2004) Nodavirus coat protein imposes dodecahedral RNA structure independent of nucleotide sequence and length. J Virol. 78: 2897-2905.

Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, Steven AC. (1996) The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol. 263: 447-462.

Watanabe K, Nishizawa T, Yoshimizu M. (2000) Selection of broodstock candidates of barfin fiounder using an ELISA system with recombinant protein of barfin fiounder nervous necrosis virus. Dis Aquat Org. 41: 219-223.

Watanabe KI, Yoshimizu M. (2002) Age-dependent humoral immune response of barfin flounder against recombinant coat protein of barfin flounder nervous necrosis virus. Fish Pathol. 37: 92-94.

Wery JP, Reddy VS, Hosur MV, Johnson JE. (1994) The refined three-dimensional structure of an insect virus at 2.8 Å resolution. J Mol Biol. 235: 565-586.

Wu YM, Hsu CH, Wang CH, Liu W, Chang WH, Lin CS. (2008) Role of the DxxDxD motif in the assembly and stability of betanodavirus particles. Arch Virol. 153: 1633-1642.

Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS. (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A. 99: 10405-10410.

Yamashita H, Mori K, Kuroda A, Nakai T. (2009) Neutralizing antibody levels for protection against betanodavirus infection in sevenband grouper, Epinephelus septemfasciatus (Thunberg), immunized with an inactivated virus vaccine. J Fish Dis. 32: 767-775.

Yan X, Dryden KA, Tang J, Baker TS. (2007) Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J Struct Biol. 157: 211-225.

Yoshikoshi K, Inoue K. (1990) Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegei). J Fish Dis. 13: 69-77.

Zafran I, Koesharyani I, Johnny F, Yuasa K, Harada T, Hatai K. (2000) Viral nervous necrosis in hump-back grouper Cromileptes altivelis larvae and juveniles in indonesia. Fish Pathol. 35: 95-96.

Zlotnick A, Natarajan P, Munshi S, Johnson JE. (1997) Resolution of space-group ambiguity and structure determination of nodamura virus to 3.3 Å resolution from pseudo-R32 (monoclinic) crystals. Acta Crystallogr D Biol Crystallogr. 53: 738-746.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 27. 孫克難(2000),賦稅制度與經濟發展-臺灣經驗的探討,財稅研究,第32卷,第1期,1-34。
2. 25. 徐仁輝(2010),預算赤字與財政政策,財稅研究,第42卷,第3期,33-45。
3. 3. 王健全(1995),「促進產業升級條例」有關研究發展租稅奬勵之效果評析,臺灣銀行季刊,第46卷 ,第1期,,15-27。
4. 26. 孫克難(2002),「財政改革委員會」的運作與功能,新世紀智庫論壇,第18期。
5. 12. 李建興、周建新、黃國芬(2005),「促進產業升級條例新興重要策略性產業租稅優惠之研究」,財稅研究,第37卷,第5期,107-125。
6. 28. 陳明進(2003),我國租稅優惠對營利事業租稅負擔之影響,管理評論,第22卷,第1期,127-151。
7. 朱寶泰 (2005) 樹木之移植及注意事項。造園季刊 57:75-80。
8. 陳右人 (1996) 根溫對檬果根生長、開花及葉片中無機要素與碳水化合物含量之影響。中國園藝42(2):131-141。
9. 8. 黃榮堯,「以作業流程為導向之營建產能提升-DISCO/CYCLONE系統」,營建管理季刊,第30-41頁,1999。
10. 11. 李育明,「生命週期評估之方法與模式探討」,環境管理報導,第十六期,第17-19頁,2000。
11. 17. 李建中、王維志,「電腦模擬與單價比對在工程採購招標之運用」,中國土木水利工程會刊, pp3-12,2001。
12. 19. 林哲全,「溫室氣體減量之經濟工具─碳稅」,能源季刊,第三十卷,第一期,第9-23頁,2001。
13. 22. 黃榮堯、詹益祥,「反循環基樁施工作業之電腦模擬分析」,中國土木水利工程學刊,第十三卷,第135-145頁,2001。
14. 27. 王順正、吳顥照、林玉瓊、吳忠芳,「走路臨界速度評量生理穩定狀態之研究」,大專體育學刊,第五卷,第一期,第259-267頁,2003。
15. 29. 馮重偉、吳獻堂,「結合基因演算法與電腦模擬於預拌廠派車作業之應用」,中國土木水利工程學刊,第十六卷,第四期,第685-694頁,2004。