跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱祐瑩
研究生(外文):Yu-ying Chu
論文名稱:單胞藻(Chlamydomonasreinhardtii)缺氮誘導油脂累積之研究I.溫度、鹽度、光及醋酸鹽之影響
論文名稱(外文):Studies on the Nitrogen Starvation Induced Lipid Accumulation in Chlamydomonas reinhardtii I. Effects of Temperature, Salinity, Light and Aceate.
指導教授:李澤民李澤民引用關係
指導教授(外文):Tse-Min Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:單胞藻醋酸鹽溫度鹽度氮缺乏Nile Red三酸甘油酯
外文關鍵詞:TemperatureSalinityNitrogen starvationNile RedTAGLightC. reinhardtiiAcetate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗利用Nile Red 染色觀察,探討Chlamydomonas reinhardtii CC 400不同環境因子(溫度、鹽度、光和醋酸鹽)對於缺氮誘導油脂累積之影響。以HS medium (High Salt medium) 之NH4Cl 為100% N (9.4 mM),在0% N 有最大量油脂,於對數生長中期(mid-log phase)之缺氮處理下亦有相同結果。低溫(15oC)下對數生長中期之缺氮處理會抑制缺氮油脂累積,提高光照強度至300 μmol photons • m-2 • s-1亦會抑制累積,黑暗顯著抑制缺氮所誘導之油脂,100 mM NaCl添加促進缺氮誘導之油脂累積,鹽度提高至200 mM NaCl 處理下則抑制累積。缺乏醋酸鹽有顯著抑制,提高醋酸鹽添加量不影響油脂累積量。總而言之,目前結果指出光和醋酸鹽為缺氮誘導油脂累積之必要因子,必須兩者皆提供下才可使缺氮誘導累積油脂達最大量。

This study was to determine the effects of several selected environmental factors (temperature, salinity, light intensity, and acetate) on the nitrogen starvation induced lipid accumulation in Chlamydomonas reinhardtii CC 400 by the Nile Red staining of lipid in the cells. Nitrogen starvation induced lipid accumulation, the extent of lipid accumulation increased as nitrogen concentrations in the medium decreased. For the 9.4 mM NH4Cl of HS medium as 100% N, the absence of NH4Cl from the medium will show the maximum induction in the lipid accumulation. This was also observed in the treatment of algal cells in mid-log phase by the absence of NH4Cl in the medium. A decrease in temperature down to 15oC depressed the nitrogen starvation induction in lipid accumulation for the algal cells from the mid-log phase, while the elevation in the light intensity up to 300 μmol photons • m-2 • s-1 also showed an inhibitory effect. However, the transfer to darkness for the nitrogen starvation also inhibited the lipid increase. The addition of 100 mM NaCl enhanced the nitrogen starvation induced lipid accumulation but the NaCl level up to 200 mM inhibited the increment. The nitrogen starvation induction of lipid increase was partly inhibited due to the absence of acetate, whereas the increase in acetate concentrations in the medium did not have effect on lipid accumulation as compared to normal acetate addition in the medium. Overall, the results of the present study show that light and acetate are essential factors for the maximum lipid accumulation in C. reinhardtii by nitrogen starvation.
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 v
圖目錄 vi
附錄目錄 vii
縮寫字對照 viii
一、前言 1
二、實驗目的與策略 15
三、實驗架構 16
四、材料與方法 17
五、結果 23
六、討論 32
七、參考文獻 35
八、表 41
九、圖 45
十、附錄 56

Aaronson, S. (1973) Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromona danica. J. Phycol. 9: 111–113.
Adlerstein, D., Bigogno, C., Khozin, I. and Cohen, Z. (1997) The effect of growth temperature and culture density on the molecular species composition of the galactolipids in the red microalga Porphyridium cruentum (Rhodophyta). J. Phycol. 33: 975 – 979.
Al-Hasan, R.H., Ali, A.M., Ka''wash, H.H. and Radwan, S.S. (1990) Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture. Journal of Applied Phycol. 2: 215-222.
Alonso, D.L., Belarbi, E.H., Fernandez-Sevilla, J.M., Rodriguez-Ruiz, J. and Grima, E.M. (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous cultures of the microalga Phaeodactylum tricornutum. Phytochemistry, 54: 461 – 471.
Arisz, S.A., van Himbergen, J.A.J., Musgrave, A., van den Ende, H. and Munnik, T. (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry, 53: 265 – 270.
Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I. and Zamir, A. (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol. 129: 1320 – 1329.
Basova, M.M. (2005) Fatty acid composition of lipids in microalgae. Int. J. Algae, 7: 33–57.
BÖlling, C. and Fiehn, O. (2005) Metabolite Profiling of Chlamydomonas reinhardtii under Nutrient Deprivation. Plant Physiol. 139: 1995–2005.
Cartens, M. Grima, E.M., Medina, A.R., Gimenez, A.G. and Ibanez-Gonzalez, J. (1996) Eicosapentaenoic acid (20:5n-3) from the marine microalgae Phaeodactylum tricornutum. Journal of the American Oil Chemists‘ Society. 73: 1025-1031.
Carvalho, A.P., Meireles, L.A. and Malcata, F.X. (2006) Microalgal reactors: A review of enclosed system designs and performances. Biotechnol Prog. 22: 1490–1506.
Chen, P., Min, M., Chen, Y.F., Wang, L., Li, Y.C., Chen, Q., Wang, C.G., Wan, Y.Q., Wang, X.Q., Cheng, Y.L., Deng, S.B., Hennessy, K., Lin, X.G., Liu, Y.H., Wang, Y.K., Martinez, B, and Ruan R. (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric & Biol Eng. 2: 1-30.
Chisti, Y. (2006) Microalgae as sustainable cell factories. Environ Eng Man J. 5: 261–274.
Chisti, Y. (2007) Biodiesel from microalgae. Biotechnology Advances. 25: 294–306.
Chojnacka, K. and Marquez-Rocha, F.J. (2004) Stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology. 3: 21–34.
Cobelas, M.A. and Lechado, J.Z. (1989) Lipids in microalgae. (A review). Biochemistry. 40: 118–145.
Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P. and Del Borghi, M. (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48: 1146–1151.
Courchesne, N.M.D., Parisien, A., Wang, B. and Lan, C.Q. (2009) Enhancement of lipid production using biochemical, genetic, and transcription factor engineering approaches. J. Biotechnol. 141: 31-41.
de Swaaf, M.E., Pronk J.C. and Sijtsma, L. (2003a) Fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol. 61: 40–43.
de Swaaf, M.E., Sijtsma, L. and Pronk, J.C. (2003b) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng. 81: 666–672.
Eriksen, N.T. (2008) The technology of microalgal culturing (a review). Biotechnol Lett. 30:1525–1536.
Fabregas, J., Maseda, A., Dominquez, A. and Otero, A. (2004) The cell composition of Nannochloropsis sp . changes under different irradiances in semicontinuous culture. World J. Microbiol. Biotechnol. 20: 31 – 35.
Floreto, E.A.T., Teshima, S. and Ishikawa, M. (1996) Effects of nitrogen and phosphorus on the growth and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 39: 69 – 74.
Folch J., Lees M., Sloan S. G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.
Gordillo, F.J.L., Goutx, M., Figueroa, F.L. and Niell, F.X. (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycol. 10: 135–144.
Gouveia, L. and Oliveira, A.C. (2009) Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology. 36: 269–274.
Graverholt, O.S. and Eriksen, N.T. (2007) Heterotrophic high cell-density fed-batch and continuous flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol. 77: 69–75.
Grobbelaar, J.U. (2000) Physiological and technological considerations for optimising mass algal cultures. J Appl Phycol. 12: 201–206.
Gurr, M.I., Harwood, J.L. and Frayn, K.N. (2002) Lipid Biochemistry. An Introduction, 5th ed. Blackwell, Oxford, 320 pp.
Guschina, I.A. and Harwood, J. L. (2006) Lipids and lipid metabolism in eukaryotic algae (A review). Progress in Lipid Research. 45: 160–186.
Guschina, I.A. and Harwood, J.L. (2007) Complex lipid biosynthesis and its manipulation in plants, pp. 253 – 279. In P. Ranalli (ed.), Improvement of Crop Plants for Industrial End Use. Springer, Dordrecht.
Harwood, J.L. (1998b). Involvement of chloroplast lipids in the reaction of plants submitted to stress. pp. 287 – 302 . In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics . Kluwer, Dordrecht.
Hossain, A.B.M.S., Salleh, A., Boyce, A.N., Chowdhury, P. and Naqiuddin, M. (2008) Biodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology. 4: 250–254.
Hu, Q. (2004) Environmental effects on cell composition. In Handbook of Microalgal Culture (Richmond, A., ed.). Oxford: Blackwell, pp. 83–93.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert M. and Darzins, A. (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 54: 621–639.
Hu, Q., Zhang, C.W. and Sommerfeld, M. (2006) Biodiesel from Algae: lessons learned over the past 60 years and future perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America, July 7–12, pp. 40–41 (Abstract).
Huber, G.W. and Dale, B.E. (2009) Biofuels: Grassoline at the Pump. Sci American. 301: 52-59.
Illman, A.M., Scragg, A.H. and Shales, S.W. (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. enzyme microb technol. 27: 631–635.
Janssen, M., de Bresser, L., Baijens. T., Tramper. J., Mur, L.R., Snel, J.F.H. and Wijffels, R.H. (2000a) Scale-up of photobioreactors: effects of mixing-induced light/dark cycles. J Appl Phycol. 12:225–237
Janssen, M., Tramper, J., Mur, L.R. and Wijfells, R.H. (2002) Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng. 81: 193–210.
Jiang, H. and Gao, K. (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 40: 651 – 654.
Khozin-Goldberg, I. and Cohen, Z. (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry. 67: 696–701.
Leõn-Bañares, R., Gonza´les-Ballester, D., Galván, A. and Fernández, E. (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22: 45–52.
Li, M., Gong, R., Rao, X., Liu, Z. and Wang, X. (2005) Effects of nitrate concentration on growth and fatty acid composition of the marine microalga Pavlova viridis(Prymnesiophyceae). Annals of Microbiology. 55: 51-55.
Li, Y., Wang, B., Wu, N. and Lan, C.Q. (2008a) Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Applied Microbiology and Biotechnology. 81: 629–636.
Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008b) Biofuels from microalgae. Biotechnology Progress 24: 815–820.
Liu, Z.Y., Wang, G.C. and Zhou, B.C. (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology. 99: 4717–4722.
Lynn, S.G., Kilham, S.S., Kreeger, D.A. and Interlandi, S.J. (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J. Phycol. 36: 510 – 522 .
Mata, T.M., Martins, A.A. and Caetano, N.S. (2010) Microalgae for biodiesel production and other applications (a review). Renewable and Sustainable Energy Reviews. 14: 217–232.
Maton, A., Hopkins, J., McLaughlin, C.W., Johnson, S., Warner, M.Q., LaHart, D. and Wright, J.D. (1993) Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall.
McLarnon-Riches, C.J., Rolph, C.E., Greenway, D.L.A. and Robinson, P.K. (1998) Effects of environmental factors and metals on Selenastrum capricornutum . Phytochemistry. 49: 1241 – 1247.
Merzlyak, M.N., Chivkunova, O.B., Gorelova, O.A., Reshetnikova, I.V., Solovchenko, A.E., Khozin-Goldberg, I. and Cohen, Z. (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J. Phycol. 43: 833–843.
Moheimani, N.R. (2005) The culture of Coccolithophorid Algae for carbon dioxide bioremediation. PhD thesis. Murdoch University.
Mussgnug, J.H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P.M., Kruse, O. and Hankamer, B. (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. 5: 802–814.
Napolitano, G.E. (1994) The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton . J. Phycol. 30: 943 – 950.
Natrah, F., Yoso, V.F.M., Shari, V.M., Abas, F. and Mariana, N.S. (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology. 2007: 19:711–718.
Norton, T.A., Melkonian, M. and Anderson, R.A. (1996) Algal Biodiversity. Phycologia. 35: 308-326.
Ogbonna J.C., Tomiyama, S. and Tanaka, H. (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient productionof α–tocopherol. J Appl Phycol. 10:67–74.
Orcutt, D.M. and Patterson, G.W. (1974) Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusiformis). Lipids. 9: 1000-1003.
Ötles, S. and Pire, R. (2001) Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC International. 84: 1708–1714.
Peltier, G. and Schmidt, G.W. (1991) Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 88: 4791–4795.
Poerschmann, J., Spijkerman, E. and Langer, U. (2004) Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microbiol. Ecol. 48: 78–89.
Poisson, L., Devos, M., Pencreac’h, G. and Ergan, F. (2002) Benefits and current developments of polyunsaturated fatty acids from microalgae lipids. OCL – Oleaginous Corps Gras Lipides. 9:92–95.
Pratoomyot, J., Srivilas, P. and Noiraksar, T. (2005) Fatty acids composition of 10 microalgal species. Songklanakarin Journal of Science and Technology. 27: 1179–1187.
Renaud, S.M., Thinh, L.V., Lambrinidis, G. and Parry, D.L. (2002) Effects of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture. 211: 195–214.
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N. and Bonini, G. (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering. 102: 100–112.
Roessler, P.G. (1990b) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26: 393–399.
Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. 19: 430–436.
Schenk, P.M., Hall, S.R.T., Stephens, E., Marx, U.C., Mussgnug, J.H. and Posten, C. (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research. 1: 20–43.
Schmidt, R.A., Wiebe, M.G. and Eriksen, N.T. (2005) Heterotrophic high cell-density fed-batch cultures of the phycocyanin producing red alga Galdieria sulphuraria. Biotechnol Bioeng. 90: 77–84.
Seto, A., Wang, H.L. and Hesseltine, C.W. (1984) Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. Journal of the American Oil Chemists'' Society. 61: 892–894.
Sheehan, J., Dunahay, T., Benemann , J. and Roessler, P. (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190, National Renewable Energy Laboratory, USA.
Shifrin, N.S. and Chisholm, S.W. (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light– dark cycles. J. Phycol. 17: 374–384.
Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z. and Merzlyak, M. N. (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J. Phycol. 20: 245–251.
Spoehr, H.A. and Milner, H.W. (1949) The chemical composition of Chlorella : effect of environmental conditions. Plant Physiol. 24: 120–149.
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial applications of microalgae. J Biosci Bioeng. 101: 87–96.
Sueoka, N. (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 46: 83–91.
Sushchik, N.N., Kalacheva, G.S., Zhila, N.O., Gladyshev, M.I. and Volova, T.G. (2003) A temperature dependence of the intra- and extracellular fatty acid composition of green algae and cyanobacterium. Russ. J. Plant Physiol. 50: 374–380.
Takagi, M. and Yoshida, T. (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering. 101: 223–226.
Tedesco, M.A. and Duerr, E.O. (1989) Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. Journal of Applied Phycology. 1: 201–209.
Tedesco, M.A. and Duerr, E.O. (2006) Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. Journal of Applied Phycology, 1: 109–201.
Thomas, W.H., Tornabene, T.G. and Weissman, J. (1983) Screening for lipid yielding microalgae: activities. SERI/STR–231–2207.
Thompson, G.A. (1996) Lipids and membrane function in green algae. Biochim. Biophys. Acta, 1302: 17–45.
Tornabene, T.G., Holzer, G., Lien, S. and Burris, N. (1983) Lipid composition of the nitrogen starved green alga Neochloris oleabundans. Enzyme Microbiol Technol. 5: 435–440.
Warabi,Y., Kusdiana, D. and Saka, S. (2004) Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology. 91: 283–287.
Wen, Z.Y. and Chen, F. (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv. 21: 273–294.
Williams, P.J.B. and Laurens, L.M.L. (2010) Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3: 554–590.
Wu Z.Y., Shi C.L. and Shi X.M. (2007) Modelling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol. 23: 1233–1238.
Wykoff, D.D., Davies, J.P., Melis, A. and Grossman, A.R. (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117: 129–139.
Xiong, W., Li, X., Xiang, J. and Wu, Q. (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol. 78:29–36.
Zhila, N.O., Kalacheva, G.S. and Volova, T.G. (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcu. Journal of Applied Phycology. 17: 309–315.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 醋酸調節單胞藻(Chlamydomonasreingardtii)缺氮誘導脂質累積之脂肪酸與三酸甘油酯合成相關基因表現
2. 光合作用電子傳遞調控單胞藻 (Chlamydomonas reinhardtii) Methionine Sulfoxide Reductase (MSR) 基因表現
3. 單胞藻 (Chlamydomonas reinhardtii) 高光強適應之研究: Hydrogen peroxide 促進抗氧化能力及抑制Nitric oxide 誘導細胞死亡過程
4. 大量表現大型海藻裂片石蓴 (Ulva fasciata Delile) GlutathioneReductase 於水稻 (Oryza sativa L.) 提高耐冷性之研究
5. 光合作用電子傳遞鏈訊息調節大型綠藻裂片石蓴(UlvafasciataDelile)光誘導之methioninesulfoxidereductase(MSR)基因表現
6. 葉綠體光合電子傳遞鏈參與光強調控單胞藻 (Chlamydomonas reinhardtii) 核基因 Methionine Sulfoxide Reductase (MSR) 之差異性表現
7. 裂片石蓴(Ulva fasciata)chlorophyll a/b-binding protein(LhcII)與photosystem I subunit III(psaF)基因表現之研究
8. Glutathione 調控單胞藻 (Chlamydomonas reinhardtii) 強光馴化 : glutathime redox status 之重要性
9. 大量表現大型海藻裂片石蓴 (Ulva fasciata Delile) Glutathione Reductase 提高水稻 (Oryza sativa L.) 幼苗耐鹽性之研究
10. 大型海藻裂片石蓴(UlvafasciataDelile)過量銅毒害之基因表現
11. 藻類及海羊齒乙酸乙酯粗萃液調節peroxisomeproliferatorresponseelement表現之初步研究
12. 臺灣蕨藻之調查與養殖研究
13. 紫外線、鹽度與硝酸鹽對小亞歷山大藻產類蕈孢素氨基酸的影響
14. 裂片石蓴protein disulfide isomerase及thioredoxin基因在高鹽逆境的表現
15. 分離異營性破囊壺藻並利用廢食用油評估其蝦紅素的產量